Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Large-Scale Robotic 3D Printing of Polymer Composites
Krčma, Martin ; Fritschi, Ena Lloret (oponent) ; Naboni, Roberto (oponent) ; Paloušek, David (vedoucí práce)
The main goal of the thesis is research and development of a 3D printing process for large-scale printing of complex, functional objects from recycled polymer composites. The first part of the thesis is material-oriented, dealing with the composite makeup, processing parameters, material properties and their degradation during 3D printing. The results of this part are summarized in a journal article comparing the mechanical properties and porosity of printed and cast samples. During this part of the thesis, material processing problems are defined, and 3D printing strategies are proposed to solve or avoid them. The second part of the thesis then deals with the design, execution and evaluation of these strategies. This is split into two articles, the first one dealing with the application and evaluation of multiaxis 3D printing strategies, and a second that proposes a new printing method. Four methods were compared, combining nonplanar slicing and oriented 3D printing and evaluating the results in terms of buildability, processing difficulty and surface quality. The insights gained during this study were then used to inform the design of the new 3D printing method that makes use of intralayer height variations and tool reorientation to enhance single perimeter printing resulting in an increase in buildability for large-scale 3D printing to over 80° of overhang.
Large-Scale Robotic 3D Printing of Polymer Composites
Krčma, Martin ; Fritschi, Ena Lloret (oponent) ; Naboni, Roberto (oponent) ; Paloušek, David (vedoucí práce)
The main goal of the thesis is research and development of a 3D printing process for large-scale printing of complex, functional objects from recycled polymer composites. The first part of the thesis is material-oriented, dealing with the composite makeup, processing parameters, material properties and their degradation during 3D printing. The results of this part are summarized in a journal article comparing the mechanical properties and porosity of printed and cast samples. During this part of the thesis, material processing problems are defined, and 3D printing strategies are proposed to solve or avoid them. The second part of the thesis then deals with the design, execution and evaluation of these strategies. This is split into two articles, the first one dealing with the application and evaluation of multiaxis 3D printing strategies, and a second that proposes a new printing method. Four methods were compared, combining nonplanar slicing and oriented 3D printing and evaluating the results in terms of buildability, processing difficulty and surface quality. The insights gained during this study were then used to inform the design of the new 3D printing method that makes use of intralayer height variations and tool reorientation to enhance single perimeter printing resulting in an increase in buildability for large-scale 3D printing to over 80° of overhang.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.