Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Application of Polymeric Hollow-Fiber Membranes in Air Filtration
Bulejko, Pavel ; Dohnal, Mirko (oponent) ; Friess, Karel (oponent) ; Svěrák, Tomáš (vedoucí práce)
Hollow-fiber membranes (HFMs) have widely been applied to many liquid treatment applications such as wastewater treatment, membrane contactors/bioreactors, membrane distillation etc. Despite the fact that HFMs are widely used for gas separation from gas mixtures, their use for mechanical filtration of aerosols is very scarce. This work studied filtration performance of polypropylene HFMs including filtration efficiency, pressure drop and pressure drop evolution with long-term dust loading. Filtration efficiency was measured using different challenging aerosols including micronized titanium dioxide powder and aerosolized ammonium sulfate. Pressure drop was measured in various configurations, including different HFM area and fiber diameter. Pressure drop evolution with long-term particle loading was carried out using a challenge dust as defined in ANSI/ASHRAE 52.2 standard. Mathematical models developed for prediction of air filtration efficiency and membrane permeability/pressure drop were compared applying them on the structural parameters of the HFMs. These membranes are characteristic of pore diameters of about 90 nm and relatively low porosity, thus high potential for nanoparticle removal from air. Furthermore, analysis on cake pressure drop and evaluation of energy demands for fun operation were done and compared with theoretically predicted values. Finally, an attempt to estimate life-cycle cost of air filtration using HFMs was outlined.
Application of Polymeric Hollow-Fiber Membranes in Air Filtration
Bulejko, Pavel ; Dohnal, Mirko (oponent) ; Friess, Karel (oponent) ; Svěrák, Tomáš (vedoucí práce)
Hollow-fiber membranes (HFMs) have widely been applied to many liquid treatment applications such as wastewater treatment, membrane contactors/bioreactors, membrane distillation etc. Despite the fact that HFMs are widely used for gas separation from gas mixtures, their use for mechanical filtration of aerosols is very scarce. This work studied filtration performance of polypropylene HFMs including filtration efficiency, pressure drop and pressure drop evolution with long-term dust loading. Filtration efficiency was measured using different challenging aerosols including micronized titanium dioxide powder and aerosolized ammonium sulfate. Pressure drop was measured in various configurations, including different HFM area and fiber diameter. Pressure drop evolution with long-term particle loading was carried out using a challenge dust as defined in ANSI/ASHRAE 52.2 standard. Mathematical models developed for prediction of air filtration efficiency and membrane permeability/pressure drop were compared applying them on the structural parameters of the HFMs. These membranes are characteristic of pore diameters of about 90 nm and relatively low porosity, thus high potential for nanoparticle removal from air. Furthermore, analysis on cake pressure drop and evaluation of energy demands for fun operation were done and compared with theoretically predicted values. Finally, an attempt to estimate life-cycle cost of air filtration using HFMs was outlined.

Viz též: podobná jména autorů
2 Friess, K.
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.