Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.01 vteřin. 
Faktory ovlivňující sprchové chlazení za vysokých teplot
Chabičovský, Martin ; Čarnogurská, Mária (oponent) ; Hajduk, Daniel (oponent) ; Raudenský, Miroslav (vedoucí práce)
Sprchové chlazení horkých povrchů se v metalurgickém průmyslu využívá při kontinuálním odlévání, válcování za tepla či při tepelném zpracování. Při sprchovém chlazení v metalurgickém průmyslu je voda rozprašována na chlazený povrch tryskami, přičemž dochází k rozpadu proudu vody na kapky. Sprchové chlazení horkých povrchů lze charakterizovat jako nucenou konvekci za přítomnosti varu. Tento fyzikálně komplikovaný děj je ovlivňován mnoha faktory, jako jsou příměsi a nečistoty ve vodě, teplota vody, průtok vody, velikost kapek, dopadová rychlost kapek, teplota povrchu, drsnost povrchu či přítomnost oxidů (okují) na chlazeném povrchu. Dominantní faktor, který ovlivňuje přenos tepla při sprchovém chlazení je průtok vody na jednotku plochy chlazeného povrchu. Ostatní faktory mají menší avšak též významný vliv. Tato práce se zabývá vlivem teploty vody, drsnosti povrchu a přítomnosti oxidů na intenzitu sprchového chlazení. Tyto faktory jsou studovány za pomocí laboratorních experimentů, při nichž je horký ocelový povrch chlazen vodním sprejem. Vliv vrstvy oxidů na chlazeném povrchu je též studován za pomocí numerické simulace. Získané experimentální výsledky jsou vysvětleny na základě teorie a zobecněny za pomocí matematických metod.
Pokročilé metody pro inverzní úlohy vedení tepla
Komínek, Jan ; Čarnogurská, Mária (oponent) ; Hajduk,, Daniel (oponent) ; Raudenský, Miroslav (vedoucí práce)
Numerické simulace tepelných procesů jsou založeny na znalosti geometrie, materiálových vlastností, počátečních a okrajových podmínek. Masivnímu používání těchto simulací v hutním průmyslu (například pro simulaci tepelného zpracování oceli) brání neznámost přesných okrajových podmínek, které na rozdíl od ostatních vstupních parametrů obvykle není snadné určit. Protože pro většinu netriviálních procesů neexistují dostatečně přesné empirické vztahy, je nutné okrajové podmínky získávat experimentální cestou. Okrajové podmínky nejde měřit přímo. Proto jsou místo nich zaznamenávány podpovrchové teploty, které jsou pomocí inverzní úlohy vedení tepla přepočítány na hledané okrajové podmínky. Tato dizertační práce se zaměřuje na dva typy inverzních úloh, které jsou stávajícími metodami špatně řešitelné. Prvním typem jsou úlohy, ve kterých dochází k prudkým (téměř skokovým) nárůstům/poklesům hodnoty okrajové podmínky. Pro tento typ úloh jsou v práci navrženy a srovnávány dva nové přístupy. Druhým typem úlohy je nestacionárně nehomogenní chlazení. Pro tento případ jsou vyvinuty tři nové metody, které jsou aplikovány na případ vodního chlazení svislého povrchu hliníkového vzorku. Základní vlastností popisovaného případu je nehomogenita chlazení. Část povrchu je intenzivně chlazena stékající vodou na rozdíl od druhé části povrchu, který je chlazen jen s malou intenzitou, protože je od přímého kontaktu s vodou chráněn parní vrstvou (Leidenfrostův efekt). Rozložení těchto dvou částí je navíc nestacionární (v průběhu experimentu se mění). Nově vyvinuté metody jsou vzájemně porovnávány.
Optimalizace bramového plynulého odlévání oceli za pomoci numerického modelu teplotního pole
Mauder, Tomáš ; Čarnogurská, Mária (oponent) ; Pyszko, René (oponent) ; Raudenský, Miroslav (oponent) ; Kavička, František (vedoucí práce)
Tato práce pojednává o optimalizaci provozu zařízení na plynulé odlévání ocelových bram. Shrnuty jsou zde základní analytické a empirické poznatky o procesu tuhnutí, o numerickém modelování a vybraných optimalizačních technikách. Jsou zde rovněž uvedeny fyzikální podmínky a faktory ovlivňující kvalitu finální oceli včetně jejich vzájemných vztahů. Základem řešení tohoto problému je vytvoření původního numerického modelu teplotního pole ve verzi off-line a jeho verifikace s reálnými provozními daty. Nadstavbu numerického modelu tvoří optimalizační model sloužící k optimální regulaci procesu, který je založený na fuzzy logice. Všestranná využitelnost optimalizačního modelu je demonstrována na několika případech, jako jsou např. nalezení licích parametrů pro dosažení vysoké kvality oceli, reakce na vzniklé havarijní situace, nalezení optimálního vztahu mezi jednotlivými parametry lití, aj. V rámci optimalizačních výsledků je v práci vytvořen rozbor doporučených změn licí trati pro konkrétní zařízení na plynulé lití za účelem dosažení vyšších povrchových teplot předlitku v místě rovnání. Celý koncept numerického a optimalizačního modelu je natolik obecný, že je možná jeho aplikace na libovolné bramové či sochorové lití oceli.
Pokročilé metody pro inverzní úlohy vedení tepla
Komínek, Jan ; Čarnogurská, Mária (oponent) ; Hajduk,, Daniel (oponent) ; Raudenský, Miroslav (vedoucí práce)
Numerické simulace tepelných procesů jsou založeny na znalosti geometrie, materiálových vlastností, počátečních a okrajových podmínek. Masivnímu používání těchto simulací v hutním průmyslu (například pro simulaci tepelného zpracování oceli) brání neznámost přesných okrajových podmínek, které na rozdíl od ostatních vstupních parametrů obvykle není snadné určit. Protože pro většinu netriviálních procesů neexistují dostatečně přesné empirické vztahy, je nutné okrajové podmínky získávat experimentální cestou. Okrajové podmínky nejde měřit přímo. Proto jsou místo nich zaznamenávány podpovrchové teploty, které jsou pomocí inverzní úlohy vedení tepla přepočítány na hledané okrajové podmínky. Tato dizertační práce se zaměřuje na dva typy inverzních úloh, které jsou stávajícími metodami špatně řešitelné. Prvním typem jsou úlohy, ve kterých dochází k prudkým (téměř skokovým) nárůstům/poklesům hodnoty okrajové podmínky. Pro tento typ úloh jsou v práci navrženy a srovnávány dva nové přístupy. Druhým typem úlohy je nestacionárně nehomogenní chlazení. Pro tento případ jsou vyvinuty tři nové metody, které jsou aplikovány na případ vodního chlazení svislého povrchu hliníkového vzorku. Základní vlastností popisovaného případu je nehomogenita chlazení. Část povrchu je intenzivně chlazena stékající vodou na rozdíl od druhé části povrchu, který je chlazen jen s malou intenzitou, protože je od přímého kontaktu s vodou chráněn parní vrstvou (Leidenfrostův efekt). Rozložení těchto dvou částí je navíc nestacionární (v průběhu experimentu se mění). Nově vyvinuté metody jsou vzájemně porovnávány.
Faktory ovlivňující sprchové chlazení za vysokých teplot
Chabičovský, Martin ; Čarnogurská, Mária (oponent) ; Hajduk, Daniel (oponent) ; Raudenský, Miroslav (vedoucí práce)
Sprchové chlazení horkých povrchů se v metalurgickém průmyslu využívá při kontinuálním odlévání, válcování za tepla či při tepelném zpracování. Při sprchovém chlazení v metalurgickém průmyslu je voda rozprašována na chlazený povrch tryskami, přičemž dochází k rozpadu proudu vody na kapky. Sprchové chlazení horkých povrchů lze charakterizovat jako nucenou konvekci za přítomnosti varu. Tento fyzikálně komplikovaný děj je ovlivňován mnoha faktory, jako jsou příměsi a nečistoty ve vodě, teplota vody, průtok vody, velikost kapek, dopadová rychlost kapek, teplota povrchu, drsnost povrchu či přítomnost oxidů (okují) na chlazeném povrchu. Dominantní faktor, který ovlivňuje přenos tepla při sprchovém chlazení je průtok vody na jednotku plochy chlazeného povrchu. Ostatní faktory mají menší avšak též významný vliv. Tato práce se zabývá vlivem teploty vody, drsnosti povrchu a přítomnosti oxidů na intenzitu sprchového chlazení. Tyto faktory jsou studovány za pomocí laboratorních experimentů, při nichž je horký ocelový povrch chlazen vodním sprejem. Vliv vrstvy oxidů na chlazeném povrchu je též studován za pomocí numerické simulace. Získané experimentální výsledky jsou vysvětleny na základě teorie a zobecněny za pomocí matematických metod.
Optimalizace bramového plynulého odlévání oceli za pomoci numerického modelu teplotního pole
Mauder, Tomáš ; Čarnogurská, Mária (oponent) ; Pyszko, René (oponent) ; Raudenský, Miroslav (oponent) ; Kavička, František (vedoucí práce)
Tato práce pojednává o optimalizaci provozu zařízení na plynulé odlévání ocelových bram. Shrnuty jsou zde základní analytické a empirické poznatky o procesu tuhnutí, o numerickém modelování a vybraných optimalizačních technikách. Jsou zde rovněž uvedeny fyzikální podmínky a faktory ovlivňující kvalitu finální oceli včetně jejich vzájemných vztahů. Základem řešení tohoto problému je vytvoření původního numerického modelu teplotního pole ve verzi off-line a jeho verifikace s reálnými provozními daty. Nadstavbu numerického modelu tvoří optimalizační model sloužící k optimální regulaci procesu, který je založený na fuzzy logice. Všestranná využitelnost optimalizačního modelu je demonstrována na několika případech, jako jsou např. nalezení licích parametrů pro dosažení vysoké kvality oceli, reakce na vzniklé havarijní situace, nalezení optimálního vztahu mezi jednotlivými parametry lití, aj. V rámci optimalizačních výsledků je v práci vytvořen rozbor doporučených změn licí trati pro konkrétní zařízení na plynulé lití za účelem dosažení vyšších povrchových teplot předlitku v místě rovnání. Celý koncept numerického a optimalizačního modelu je natolik obecný, že je možná jeho aplikace na libovolné bramové či sochorové lití oceli.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.