National Repository of Grey Literature 47 records found  beginprevious28 - 37next  jump to record: Search took 0.00 seconds. 
A tool for generating a random configuration of a cyber arena
Matisko, Maroš ; Kolařík, Martin (referee) ; Uher, Václav (advisor)
The master's thesis is focused on the design and implementation of a tool for generating configuration named Ansible. The result of using this tool is generated configuration, which contains random values chosen according to specified parameters and it was deployed on a virtual testing infrastructure. The theoretical part describes approaches of network automation in the process of deploying and configuration of network devices called Infrastructure as code. It also describes programme Ansible, which will be using the output of the implemented tool. The practical part of the thesis is focused on designing the functionality and internal structure of the tool, implementation of the tool and testing implemented tool as well as generated configuration.
Image segmentation methods with limited data sets
Horečný, Peter ; Kolařík, Martin (referee) ; Burget, Radim (advisor)
The goal of this thesis was to propose an image segmentation method, which is capable of effective segmentation process with small datasets. Recently published ODE neural network was used for this method, because its features should provide better generalization in case of tasks with only small datasets available. The proposed ODE-UNet network was created by combining UNet architecture with ODE neural network, while using benefits of both networks. ODE-UNet reached following results on ISBI dataset: Rand: 0,950272 and Info: 0,978061. These results are better than the ones received from UNet model, which was also tested in this thesis, but it has been proven that state of the art can not be outperformed using ODE neural networks. However, the advantages of ODE neural network over tested UNet architecture and other methods were confirmed, and there is still a room for improvement by extending this method.
Image segmentation using graph neural networks
Boszorád, Matej ; Kolařík, Martin (referee) ; Myška, Vojtěch (advisor)
This diploma thesis describes and implements the design of a graph neural network usedfor 2D segmentation of neural structure. The first chapter of the thesis briefly introduces the problem of segmentation. In this chapter, segmentation techniques are divided according to the principles of the methods they use. Each type of technique contains the essence of this category as well as a description of one representative. The second chapter of the diploma thesis explains graph neural networks (GNN for short). Here, the thesis divides graph neural networks in general and describes recurrent graph neural networks(RGNN for short) and graph autoencoders, that can be used for image segmentation, in more detail. The specific image segmentation solution is based on the message passing method in RGNN, which can replace convolution masks in convolutional neural networks.RGNN also provides a simpler multilayer perceptron topology. The second type of graph neural networks characterised in the thesis are graph autoencoders, which use various methods for better encoding of graph vertices into Euclidean space. The last part ofthe diploma thesis deals with the analysis of the problem, the proposal of its specific solution and the evaluation of results. The purpose of the practical part of the work was the implementation of GNN for image data segmentation. The advantage of using neural networks is the ability to solve different types of segmentation by changing training data. RGNN with messaging passing and node2vec were used as implementation GNNf or segmentation problem. RGNN training was performed on graphics cards provided bythe school and Google Colaboratory. Learning RGNN using node2vec was very memory intensive and therefore it was necessary to train on a processor with an operating memory larger than 12GB. As part of the RGNN optimization, learning was tested using various loss functions, changing topology and learning parameters. A tree structure method was developed to use node2vec to improve segmentation, but the results did not confirman improvement for a small number of iterations. The best outcomes of the practical implementation were evaluated by comparing the tested data with the convolutional neural network U-Net. It is possible to state comparable results to the U-Net network, but further testing is needed to compare these neural networks. The result of the thesisis the use of RGNN as a modern solution to the problem of image segmentation and providing a foundation for further research.
Optimization of aluminium casting process using numerical simulation
Kolařík, Martin ; Lána, Ivo (referee) ; Krutiš, Vladimír (advisor)
The master’s thesis deals with the analysis of casting technology of the selected aluminium casting. It is a casting of a part of CNC milling machine and it is cast by gravity casting into a permanent mold. The defects which are the cause of a high percentage of nonconforming production were analyzed. Furthermore, the master’s thesis includes a complete analysis of filling and solidification of this casting in the ProCast simulation program. Numerical simulation results are verified and improved. Then the causes of problematic casting defects are proven on several calculated variants. Measures are proposed to minimize the tendency to produce castings with defects leading to nonconforming production.
The effect of the background and dataset size on training of neural networks for image classification
Mikulec, Vojtěch ; Kolařík, Martin (referee) ; Rajnoha, Martin (advisor)
This bachelor thesis deals with the impact of background and database size on training of neural networks for image classification. The work describes techniques of image processing using convolutional neural networks and the influence of background (noise) and database size on training. The work proposes methods which can be used to achieve faster and more accurate training process of convolutional neural networks. A binary classification of Labeled Faces in the Wild dataset is selected where the background is modified with color change or cropping for each experiment. The size of dataset is crucial for training convolutional neural networks, there are experiments with the size of training set in this work, which simulate a real problem with the lack of data when training convolutional neural networks for image classification.
System for 3D data visualisation in virtual reality
Kalafut, Oliver ; Mašek, Jan (referee) ; Kolařík, Martin (advisor)
This bachelor thesis deals with the imaging of medical models, for example human body organs, in virtual reality via Oculus Go. Oculus Go is an all-in-one device with a powerful processor and high-resolution display that is ideal for this bachelor thesis. The main goal is the conversion of 2D and 3D medical data formats, including formats such as DICOM and NIfTI, into 3D formats usable for virtual reality and then create the application. The first part of this work is devoted to the theoretical introduction and introduces the issues of virtual reality and 3D modelling to the reader. Then in the practical part, there was implemented a standalone (offline) application for display and interaction of used medical models with users in the virtual reality environment. In total, eight models of different parts of the human body were processed and converted to a uniform 3D Object (.obj) format. Subsequently, they were imported into program Unity, in which I created the entire application environment called Model Preview VR. The application enables viewing, zooming, rotating, and cross-section features of individual objects and is suitable for the presentation of simple models. This application can be helpful for development of not only medical imaging, but also for getting quality photos for publishing.
Dataset generation for specific cases of face recognition
Kolmačka, Tomáš ; Kolařík, Martin (referee) ; Rajnoha, Martin (advisor)
The diploma thesis deals with current problems of person identification and deep learning. Furthermore, the work deals mainly with obtaining quality and diverse data that are used to train deep learning with convolutional neural networks for face recognition. There is very little public access to such data, so the practical part focuses on creating the MakeHuman plugin that will generate a database of random face images. It is possible to generate faces according to five different scenarios in which purely random faces or faces where the same can be seen with modifications such as different hair, beard, hat, glasses and more are created. The scenarios also allow you to generate faces with some expressions or faces as they age. You can set some parameters that give the appearance of the resulting database in the plugin. This can include face images from different angles of rotation, zooming and lighting.
Image segmentation of unbalanced data using artificial intelligence
Polách, Michal ; Rajnoha, Martin (referee) ; Kolařík, Martin (advisor)
This thesis focuses on problematics of segmentation of unbalanced datasets by the useof artificial inteligence. Numerous existing methods for dealing with unbalanced datasetsare examined, and some of them are then applied to real problem that consist of seg-mentation of dataset with class ratio of more than 6000:1.
Multiclass segmentation of 3D medical data using deep learning
Slunský, Tomáš ; Uher, Václav (referee) ; Kolařík, Martin (advisor)
Master's thesis deals with multiclass image segmentation using convolutional neural networks. The theoretical part of the Master's thesis focuses on image segmentation. There are basics principles of neural networks and image segmentation with more types of approaches. In practical part the Unet architecture is choosen and is described for image segmentation more. U-net was applied for medicine dataset. There is processing procedure which is more described for image proccesing of three-dimmensional data. There are also methods for data preproccessing which were applied for image multiclass segmentation. Final part of current master's thesis evaluates results.
Deep neural network for supercomputer environments
Bronda, Samuel ; Kolařík, Martin (referee) ; Burget, Radim (advisor)
The main benefit of the work is the optimization of the hardware configuration for the calculation of neural networks. The theoretical part describes neural networks, deep learning frameworks and hardware options. The next part of the thesis deals with implementation of performance tests, which include application of Inception V3 and ResNet models. Network models are applied to various graphics cards and computing hardware. The output of the thesis is the implemented model of the network Inception V3, which examines the graphics cards and their performance, time-consuming calculations and their efficiency. The ResNet model is applied to a section that examines other impacts on neural network computing such as used disk, operating memory, and so on. Each practical part contains a discussion where the knowledge of the given part is explained. In the case of consumption measurement, a mismatch between the declaration by the manufacturer and the measured values was identified.

National Repository of Grey Literature : 47 records found   beginprevious28 - 37next  jump to record:
See also: similar author names
11 Kolarik, Martin
1 Kolařík, Matouš
5 Kolařík, Matěj
1 Kolařík, Michal
3 Kolařík, Miroslav
11 Kolárik, Martin
5 Kolárik, Matej
2 Kolárik, Matúš
Interested in being notified about new results for this query?
Subscribe to the RSS feed.