National Repository of Grey Literature 10 records found  Search took 0.01 seconds. 
Preparation of nanoparticles and nanofibers with antimicrobial components
Kubišová, Veronika ; Slaninová, Eva (referee) ; Skoumalová, Petra (advisor)
This thesis addresses the problem of inadequate current wound therapy and presents a solution in the form of nanomaterial-based wound dressings (coverings). Specifically, it focuses on the development and characterization of various nanofibrous materials with integrated liposome particles that could serve as a source of therapeutic agents and be useful specifically in the field of a wound therapy. The review in the introductory part of the thesis first focused on the mentioned problem, which describes the shortcomings of existing conventional dressing materials. A description of human skin from an anatomical and functional point of view was not omitted, nor was the wound healing process itself. Different types of covering materials were also presented. However, a large part was focused on nanomaterials and their use in the field of the skin wound therapy. The nanomaterials mentioned were mainly liposome particles and nanofibres, as the experimental part of the work was focused on these structures. The description dealt with the characterization of these structures as well as the biopolymers used for their preparation. However, the aim was to prepare nanofibers with liposome content, so the method of forming such systems was described. Various therapeutic agents are also an integral part of the covering materials, especially those that suppress the development of infection and reduce wound pain; therefore, the search focused on the antibiotic ampicillin and the analgesic ibuprofen. The experimental part was devoted to the actual production of nanofibers with liposomes and also to the qualitative demonstration of the presence of liposomes in electrostatically prepared nanofibers. The selected polymeric components of these systems were polyhydroxybutyrate (PHB) and gelatine. However, the nanofibers and liposome particles (as well as combined liposomes with PHB) were first prepared in their own form and characterized mainly in terms of the gradual release of the drug substances. The results obtained were then compared with those of therapeutic drug delivery via combined nanofibrous structures with liposomes. For these combined structures, the aim was to achieve synergy in drug delivery between these systems. The aim of this work was to create a biomaterial covering with the controlled drug release. The drugs contained in these materials were the aforementioned ampicillin and ibuprofen. An important part of the work was then to determine the safety of the prepared materials which were tested for cytotoxicity, where the tests performed were MTT test and LDH test. And the actual wound healing ability of the nanofibers was then monitored in a scratch test or a "wound healing" test. At the end of the paper, recommendations for future work on this topic are given.
Wound dressing nanofibers mats fabricated from nanocomposite material
Čileková, Marta ; Pavliňák,, David (referee) ; Abdellatif, Abdelmohsan (advisor)
Boli pripravené kryty rán na bázi prírodných látok polyvinyl alcohol/ hyaluronan/ strieborné nanočastice (PVA/ HA/ Ag-NPs). Hyaluronan bol použitý ako redukčné a stabilizačné činidlo pre syntézu nanočastíc striebra. Pri príprave Ag-NPs boli testované viaceré parametre ako koncentrácia dusičnanu strieborného ako zdroja Ag-NPs (0,01; 0,1;0,5;1 M), koncentrácia kyseliny hyalurónovej (1,2 %) a jej rozdielna molekulová hmotnosť. Kryty rán z nanovlákien boli pripravené pomocou techniky electro-spinning z roztokov líšiacich sa pomerom PVA a HA/Ag-NPs (100; 90/10; 80/20; 60/40; 50/50). Vlastnosti nanokompozitu HA/Ag-NPs boli hodnotené pomocou TEM, reológie, DLS, XRD, UV/Vis spektroskopie a kryty rán boli charakterizované pomocou SEM, TGA, FTIR a ťahovej skúšky.
Encapsulation of active substances into nanofibers and possibilities of their application
Procházková, Lucie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
The master thesis was based on the optimization of the production of nanofiber covers and to gaine the product for subsequent functional use. The production of nanofiber covers was made by electrospinning and forcespinning from selected materials. Polyhydroxybutyrate, gelatin, chitosan and alginate were used as starting materials. After successful optimization, these materials were enriched with active ingredients ampicillin and ibuprofen for the functionalized use of covers for more effective wound healing. The theoretical part was focused on the issue of skin, healing processes, types of wounds and nanofibers, the characterization of selected starting materials for the formation of nanofibers was also mentioned. The practical part was based on the lengthy optimization of the preparation of fiber covers and later enriched with active ingredients. Furthermore, combined covers made of different materials with contents of both active ingredients were designed. This was followed by the characterization of all prepared covers from the point of view of stability in the short and long term. The gradual release of active ingredients was determined spectrophotometrically and by hifh performance liquid chromatography. It was also important to determine the antimicrobial activity of selected active substances. At the end of all testing, combined coatings containing both active ingredients were used for safety testing with human keratinocyte cells (HaCaT). Safety testing was based on determining the viability of human cells using the MTT test, to verify the LDH test. A scratch test was also performed, a wound healing test after the application of devised combined covers.
Preparation of bioactive wound dressings and testing their interaction with human cells
Bendová, Agáta ; Márová, Ivana (referee) ; Skoumalová, Petra (advisor)
The thesis was focused on the preparation and optimization of the preparation of wound dressing from materials with bioactive ingredients. In this work were prepared nanofiber dressings based on polyhydroxybutyrate and non-fibrous dressings from alginate and chitosan. Nanofibers were prepared by electrospinning and forcespinning methods. The bioactive components, which were used to functionalize the prepared dressings, were plant extracts, clotrimazole, ampicillin, lysozyme, and proteolytic enzymes. The theoretical part is focused on the description of the use of nanofibrous and non-fibrous materials in medicine, characterization of materials for the production of wound dressings and bioactive components. Furthermore, this section describes the methods used to prepare and characterize wound dressings. In the practical part were prepared aqueous and oil extracts from selected plants. Extracts were characterized for polyphenols content and antioxidant activity. PHB-based nanofibers were prepared using electrospinning and forcepinning methods. Nanofibers were enriched with selected plant oil extracts and clotrimazol. Modified nanofibres were detemined for antioxidant activity, short-term and long-term stability. Non-fibrous wound dressings were prepared from alginate and chitosan. These dressings were functionalized by the addition of selected aqueous extracts, ampicillin, lysozyme, papain, bromelain, and collagenase. Non-fibrous wound dressings were determined for antioxidant activity, short-term stability and proteolytic activity. The prepared wound dressings were tested for their antimicrobial effects on cultures of Micrococcus luteus, Serratia marcescens, Staphylococcus epidermidis and Escherichia coli. In conclusion, successfully prepared bioactive wound dressings with antioxidant and antimicrobial agents were tested for safety on human cells. The determination was performed using the MTT cytotoxicity test on human keratinocytes.
Preparation and characterization of modern wound covers
Balášová, Patricie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
This diploma thesis is focused on the study of bioactive wound dressings. During the thesis, hydrogel, lyophilized and nanofiber wound dressings were prepared. Hydrogel and lyophilized wound dressings were prepared on basis of two polysaccharides – alginate and chitosan. Nanofiber wound dressings were prepared by spinning polyhydroxybutyrate. All prepared wound dressings were enriched with bioactive substances, which represented analgesics (ibuprofen), antibiotics (ampicillin) and enzymes (collagenase). Into hydrogel and lyophilized wound dressings were all the mentioned active substances incorporated, whereas nanofiber wound dressings were only with ibuprofen and ampicillin prepared. The theoretical part deals with the anatomy and function of human skin. There was explained the process of wound healing and also there were introduced available modern wound dressings. The next chapter of the theoretical part deals with materials for preparing wound dressings (alginate, chitosan, polyhydroxybutyrate) and with active substances, which were used during the experimental part of this thesis. In the theoretical part, the methods of preparation of nanofiber wound dressings and also the methods of cytotoxicity testing used in this work were presented. The first part of the experimental part of this thesis was focused on preparing already mentioned wound dressings. Then, their morphological changes over time and also the gradual release of incorporated active substances into the model environment were monitored. The gradual release of ampicillin was monitored not only spectrophotometrically, but also by ultra-high-performance chromatography. In wound dressings, in which collagenase was incorporated, was also the final proteolytic activity of this enzyme monitored. The effect of the active substances was observed on three selected microorganisms: Escherichia coli, Staphylococcus epidermidis and Candida glabrata. The cytotoxic effect of the active substances on the human keratinocyte cell line was monitored by MTT test and LDH test. A test for monitoring the rate of wound healing – a scratch test – was also performed.
Preparation of nanoparticles and nanofibers with antimicrobial components
Kubišová, Veronika ; Slaninová, Eva (referee) ; Skoumalová, Petra (advisor)
This thesis addresses the problem of inadequate current wound therapy and presents a solution in the form of nanomaterial-based wound dressings (coverings). Specifically, it focuses on the development and characterization of various nanofibrous materials with integrated liposome particles that could serve as a source of therapeutic agents and be useful specifically in the field of a wound therapy. The review in the introductory part of the thesis first focused on the mentioned problem, which describes the shortcomings of existing conventional dressing materials. A description of human skin from an anatomical and functional point of view was not omitted, nor was the wound healing process itself. Different types of covering materials were also presented. However, a large part was focused on nanomaterials and their use in the field of the skin wound therapy. The nanomaterials mentioned were mainly liposome particles and nanofibres, as the experimental part of the work was focused on these structures. The description dealt with the characterization of these structures as well as the biopolymers used for their preparation. However, the aim was to prepare nanofibers with liposome content, so the method of forming such systems was described. Various therapeutic agents are also an integral part of the covering materials, especially those that suppress the development of infection and reduce wound pain; therefore, the search focused on the antibiotic ampicillin and the analgesic ibuprofen. The experimental part was devoted to the actual production of nanofibers with liposomes and also to the qualitative demonstration of the presence of liposomes in electrostatically prepared nanofibers. The selected polymeric components of these systems were polyhydroxybutyrate (PHB) and gelatine. However, the nanofibers and liposome particles (as well as combined liposomes with PHB) were first prepared in their own form and characterized mainly in terms of the gradual release of the drug substances. The results obtained were then compared with those of therapeutic drug delivery via combined nanofibrous structures with liposomes. For these combined structures, the aim was to achieve synergy in drug delivery between these systems. The aim of this work was to create a biomaterial covering with the controlled drug release. The drugs contained in these materials were the aforementioned ampicillin and ibuprofen. An important part of the work was then to determine the safety of the prepared materials which were tested for cytotoxicity, where the tests performed were MTT test and LDH test. And the actual wound healing ability of the nanofibers was then monitored in a scratch test or a "wound healing" test. At the end of the paper, recommendations for future work on this topic are given.
Encapsulation of active substances into nanofibers and possibilities of their application
Procházková, Lucie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
The master thesis was based on the optimization of the production of nanofiber covers and to gaine the product for subsequent functional use. The production of nanofiber covers was made by electrospinning and forcespinning from selected materials. Polyhydroxybutyrate, gelatin, chitosan and alginate were used as starting materials. After successful optimization, these materials were enriched with active ingredients ampicillin and ibuprofen for the functionalized use of covers for more effective wound healing. The theoretical part was focused on the issue of skin, healing processes, types of wounds and nanofibers, the characterization of selected starting materials for the formation of nanofibers was also mentioned. The practical part was based on the lengthy optimization of the preparation of fiber covers and later enriched with active ingredients. Furthermore, combined covers made of different materials with contents of both active ingredients were designed. This was followed by the characterization of all prepared covers from the point of view of stability in the short and long term. The gradual release of active ingredients was determined spectrophotometrically and by hifh performance liquid chromatography. It was also important to determine the antimicrobial activity of selected active substances. At the end of all testing, combined coatings containing both active ingredients were used for safety testing with human keratinocyte cells (HaCaT). Safety testing was based on determining the viability of human cells using the MTT test, to verify the LDH test. A scratch test was also performed, a wound healing test after the application of devised combined covers.
Preparation and characterization of modern wound covers
Balášová, Patricie ; Pernicová, Iva (referee) ; Skoumalová, Petra (advisor)
This diploma thesis is focused on the study of bioactive wound dressings. During the thesis, hydrogel, lyophilized and nanofiber wound dressings were prepared. Hydrogel and lyophilized wound dressings were prepared on basis of two polysaccharides – alginate and chitosan. Nanofiber wound dressings were prepared by spinning polyhydroxybutyrate. All prepared wound dressings were enriched with bioactive substances, which represented analgesics (ibuprofen), antibiotics (ampicillin) and enzymes (collagenase). Into hydrogel and lyophilized wound dressings were all the mentioned active substances incorporated, whereas nanofiber wound dressings were only with ibuprofen and ampicillin prepared. The theoretical part deals with the anatomy and function of human skin. There was explained the process of wound healing and also there were introduced available modern wound dressings. The next chapter of the theoretical part deals with materials for preparing wound dressings (alginate, chitosan, polyhydroxybutyrate) and with active substances, which were used during the experimental part of this thesis. In the theoretical part, the methods of preparation of nanofiber wound dressings and also the methods of cytotoxicity testing used in this work were presented. The first part of the experimental part of this thesis was focused on preparing already mentioned wound dressings. Then, their morphological changes over time and also the gradual release of incorporated active substances into the model environment were monitored. The gradual release of ampicillin was monitored not only spectrophotometrically, but also by ultra-high-performance chromatography. In wound dressings, in which collagenase was incorporated, was also the final proteolytic activity of this enzyme monitored. The effect of the active substances was observed on three selected microorganisms: Escherichia coli, Staphylococcus epidermidis and Candida glabrata. The cytotoxic effect of the active substances on the human keratinocyte cell line was monitored by MTT test and LDH test. A test for monitoring the rate of wound healing – a scratch test – was also performed.
Wound dressing nanofibers mats fabricated from nanocomposite material
Čileková, Marta ; Pavliňák,, David (referee) ; Abdellatif, Abdelmohsan (advisor)
Boli pripravené kryty rán na bázi prírodných látok polyvinyl alcohol/ hyaluronan/ strieborné nanočastice (PVA/ HA/ Ag-NPs). Hyaluronan bol použitý ako redukčné a stabilizačné činidlo pre syntézu nanočastíc striebra. Pri príprave Ag-NPs boli testované viaceré parametre ako koncentrácia dusičnanu strieborného ako zdroja Ag-NPs (0,01; 0,1;0,5;1 M), koncentrácia kyseliny hyalurónovej (1,2 %) a jej rozdielna molekulová hmotnosť. Kryty rán z nanovlákien boli pripravené pomocou techniky electro-spinning z roztokov líšiacich sa pomerom PVA a HA/Ag-NPs (100; 90/10; 80/20; 60/40; 50/50). Vlastnosti nanokompozitu HA/Ag-NPs boli hodnotené pomocou TEM, reológie, DLS, XRD, UV/Vis spektroskopie a kryty rán boli charakterizované pomocou SEM, TGA, FTIR a ťahovej skúšky.
Preparation of bioactive wound dressings and testing their interaction with human cells
Bendová, Agáta ; Márová, Ivana (referee) ; Skoumalová, Petra (advisor)
The thesis was focused on the preparation and optimization of the preparation of wound dressing from materials with bioactive ingredients. In this work were prepared nanofiber dressings based on polyhydroxybutyrate and non-fibrous dressings from alginate and chitosan. Nanofibers were prepared by electrospinning and forcespinning methods. The bioactive components, which were used to functionalize the prepared dressings, were plant extracts, clotrimazole, ampicillin, lysozyme, and proteolytic enzymes. The theoretical part is focused on the description of the use of nanofibrous and non-fibrous materials in medicine, characterization of materials for the production of wound dressings and bioactive components. Furthermore, this section describes the methods used to prepare and characterize wound dressings. In the practical part were prepared aqueous and oil extracts from selected plants. Extracts were characterized for polyphenols content and antioxidant activity. PHB-based nanofibers were prepared using electrospinning and forcepinning methods. Nanofibers were enriched with selected plant oil extracts and clotrimazol. Modified nanofibres were detemined for antioxidant activity, short-term and long-term stability. Non-fibrous wound dressings were prepared from alginate and chitosan. These dressings were functionalized by the addition of selected aqueous extracts, ampicillin, lysozyme, papain, bromelain, and collagenase. Non-fibrous wound dressings were determined for antioxidant activity, short-term stability and proteolytic activity. The prepared wound dressings were tested for their antimicrobial effects on cultures of Micrococcus luteus, Serratia marcescens, Staphylococcus epidermidis and Escherichia coli. In conclusion, successfully prepared bioactive wound dressings with antioxidant and antimicrobial agents were tested for safety on human cells. The determination was performed using the MTT cytotoxicity test on human keratinocytes.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.