National Repository of Grey Literature 94 records found  beginprevious52 - 61nextend  jump to record: Search took 0.01 seconds. 
Integration of nanostructures into functional devices
Citterberg, Daniel ; Mikulík, Petr (referee) ; Kolíbal, Miroslav (advisor)
This master thesis is focused on characterization of electrical transport properties of one-dimensional nanostructures. First section of this work deals with theoretical description of the experimental approaches to realization of such measurements. This section involves also a detail discussion of preparation of contacts using e-beam lithography. Next, theoretical description of characterization of nanostructures using photoluminescence measurements is given. Second section describes practical application of the aforementioned electrical transport measurements. Presented results include transport and photoluminescence measurements of WS2 nanotubes, InAs and WO2.72 nanowires. The last section of this thesis deals with nanowire quantum well heterostructures. The section provides both a deeper theoretical view of the problem and results of the photoluminescence measurements are shown.
Structure defects in SiC radiation detectors
Zetek, Matyáš ; Belas, Eduard (advisor) ; Hazdra, Pavel (referee)
Silicon carbide (SiC), is a wide band gap (2.4 eV < Eg < 3.3 eV) semiconducting material well known for its potential applications in high-temperature, high-power, high-frequency or hard radiation resistant devices. In this thesis, we are broadening elementary knowledge about this material. We identify energy levels in the material, using Photo-Hall effect spectroscopy supported by the temperature dependency of classic Hall effect measurement and temperature dependent photoluminescence. This knowledge is essential to allow SiC application as a radiation detector.
Ionic polyacetylene type polymers and polymer networks by catalyst-free quaternization polymerization
Faukner, Tomáš
(Doctoral Thesis, 2016, Mgr. Tomáš Faukner, IONIC POLYACETYLENE TYPE POLYMERS AND POLYMER NETWORKS BY CATALYST FREE QUATERNIZATION POLYMERIZATION) The composition and structure of a series of ionic π-conjugated poly(monosubstituted acetylene)s prepared via catalyst-free quaternization polymerization (QP) of 2-ethynylpyridine (2EP) activated with equimolar amount of alkyl halide [RX = ethyl bromide, ethyl iodide, nonyl bromide and haxadecyl (cetyl) bromide] as a quaternizing agent (QA) have been studied in detail. The performed QPs gave ionic polymers well soluble in polar solvents, with approximately half of pyridine rings quaternized, which implies that also non-quaternized monomers were involved in the process of QP. The configurational structure of polyacetylene main chains was suggested based on 1 H NMR, IR as well as Raman (SERS) spectral methods. The QPs in bulk gave more expected irregular cis/trans polymers while the QPs in acetonitrile solution gave high-cis polymers. A series of prepared symmetrical bi-pyridylacetylene based monomers has been polymerized via QP approach resulting into a series of new ionic π-conjugated poly(disubstituted acetylene) type materials. It is therefore obvious that the mechanism of quaternization activation frequently applied on monosubstituted...
Electrochemical etching of silicon
Vrzal, Pavel ; Voborný, Stanislav (referee) ; Šamořil, Tomáš (advisor)
The electrochemical etching is very used technique for semiconductor materials modification. Different structures which find applications in many fields (biotechnology, nanotechnology or electronics) can be prepared by this technique. The task of bachelor’s thesis was preparation of porous silicon using electrochemical etching. At first, a study dedicated to porous Si was carried out. Experimental part of this work deals with a design of etching cell which was used for preparation of porous silicon by electrochemical etching. In addition, the porous Si was prepared by metal assisted chemical etching. Subsequently, created structures were analyzed by scanning electron microscopy. Photoluminescence properties of porous silicon were studied as well.
Functionalized microporous polymer networks prepared from ethynylarenes
Stahlová, Sabina ; Sedláček, Jan (advisor) ; Etrych, Tomáš (referee) ; Červený, Libor (referee)
The preparation of a new group of functionalized conjugated polymer networks has been described based on spontaneous quaternization polymerization of ethynylpyridines with bis(bromomethyl)arenes. The networks consisted of polyacetylene chains with pyridyl and pyridiniumyl pendants cross-linked with -CH2(arylene)CH2- links. The variation of the ratio of monomer and quaternization agent in the feed modified the ratio of pyridyl and pyridiniumyl groups in the networks (pyridyl/pyridiniumyl ratios from 0 to 1.32). The networks did not exhibit a permanent microporosity that could be confirmed by nitrogen adsorption at 77 K. Nevertheless, all networks were active in capture of CO2 at 293 K (up to 0.73 mmol CO2/g, 750 Torr). It has been hypothesized that CO2 capture reflected formation of a temporary porous texture of the networks through conformational changes of the network segments enabled by the segments mobility at room temperature. The preparation of functionalized conjugated polymer networks with permanent micro/mesoporosity (SBET up to 667 m2 /g) has been described that was based on chain coordination copolymerization of acetylenic monomers. The copolymerization of 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl with mono or diethynylbenzenes bearing NO2 or CH2OH groups has been demonstrated as...
Ionic polyacetylene type polymers and polymer networks by catalyst-free quaternization polymerization
Faukner, Tomáš ; Zedník, Jiří (advisor) ; Balcar, Hynek (referee) ; Sedlařík, Vladimír (referee)
(Doctoral Thesis, 2016, Mgr. Tomáš Faukner, IONIC POLYACETYLENE TYPE POLYMERS AND POLYMER NETWORKS BY CATALYST FREE QUATERNIZATION POLYMERIZATION) The composition and structure of a series of ionic π-conjugated poly(monosubstituted acetylene)s prepared via catalyst-free quaternization polymerization (QP) of 2-ethynylpyridine (2EP) activated with equimolar amount of alkyl halide [RX = ethyl bromide, ethyl iodide, nonyl bromide and haxadecyl (cetyl) bromide] as a quaternizing agent (QA) have been studied in detail. The performed QPs gave ionic polymers well soluble in polar solvents, with approximately half of pyridine rings quaternized, which implies that also non-quaternized monomers were involved in the process of QP. The configurational structure of polyacetylene main chains was suggested based on 1 H NMR, IR as well as Raman (SERS) spectral methods. The QPs in bulk gave more expected irregular cis/trans polymers while the QPs in acetonitrile solution gave high-cis polymers. A series of prepared symmetrical bi-pyridylacetylene based monomers has been polymerized via QP approach resulting into a series of new ionic π-conjugated poly(disubstituted acetylene) type materials. It is therefore obvious that the mechanism of quaternization activation frequently applied on monosubstituted...
Ultrafast spectroscopy of hybrid nanosystems
Galář, Pavel ; Malý, Petr (advisor) ; Herynková, Kateřina (referee) ; Vrňata, Martin (referee)
Title: Ultrafast spectroscopy of hybrid nanosystems Author: RNDr. Pavel Galář Department: Department of Chemical Physics and Optics Supervisor: prof. RNDr. Petr Malý, DrSc. Abstract: This Ph. D. thesis is focused on physical phenomena located at the interface of hybrid nanostructure composed of polycrystalline diamond and polymer polypyrrole. The main method used in our experimental study was ultrafast laser spectroscopy that allowed us to gain new findings about electron recombination processes in polycrystalline diamond layers, polypyrrole and in their hybrid structures. The research was focused on mutual influence of both components, especially through energy and charge transfer. In the first step of our research we carried out optical characterisation of different kinds of polypyrrole and complex study of recombination processes dynamics of photoexcited charge carriers in polycrystalline diamond. The measurements were realized by the methods of time-resolved photoluminescence and transmission spectroscopy in the time scale from picoseconds to milliseconds. On the basis of the obtained results the model explaining the origin of luminescence signal related to the different kinds of electron recombination processes in non- diamond phase and on surface defects of diamond grains in polycrystalline layers was...
Functionalized microporous polymer networks prepared from ethynylarenes
Stahlová, Sabina
The preparation of a new group of functionalized conjugated polymer networks has been described based on spontaneous quaternization polymerization of ethynylpyridines with bis(bromomethyl)arenes. The networks consisted of polyacetylene chains with pyridyl and pyridiniumyl pendants cross-linked with -CH2(arylene)CH2- links. The variation of the ratio of monomer and quaternization agent in the feed modified the ratio of pyridyl and pyridiniumyl groups in the networks (pyridyl/pyridiniumyl ratios from 0 to 1.32). The networks did not exhibit a permanent microporosity that could be confirmed by nitrogen adsorption at 77 K. Nevertheless, all networks were active in capture of CO2 at 293 K (up to 0.73 mmol CO2/g, 750 Torr). It has been hypothesized that CO2 capture reflected formation of a temporary porous texture of the networks through conformational changes of the network segments enabled by the segments mobility at room temperature. The preparation of functionalized conjugated polymer networks with permanent micro/mesoporosity (SBET up to 667 m2 /g) has been described that was based on chain coordination copolymerization of acetylenic monomers. The copolymerization of 1,4-diethynylbenzene or 4,4'-diethynylbiphenyl with mono or diethynylbenzenes bearing NO2 or CH2OH groups has been demonstrated as...
Electrical and optical properties of ZnO single crystals
Zetek, Matyáš ; Belas, Eduard (advisor) ; Moravec, Pavel (referee)
In this thesis, we study electrical and optical properties of ZnO single crystals, by processing measurements of Hall effect to low temperatures. We also research how defects influence ZnO single crystal in terms of its electrical properties. We studied donors and acceptors levels in this material and their activation energies. We try to find what cause these donors and acceptors. We characterized material with its electrical conductivity, carrier concentration and carrier mobility. We carry an experiment of annealing ZnO in vapor of Zn, while we are looking for a change in mobility and a change in defect structure. As well we process photoluminescence measurement, the ZnO was excited with 355nm laser - light energy higher than the bandgap. We see green luminescence and its shift towards blue part of the spectra after annealing the crystals in ZnO vapor. Powered by TCPDF (www.tcpdf.org)
Reversible interactions of pyrazines and photoluminescent dihydropyrazines
Coufal, Radek ; Drahoňovský, Dušan (advisor) ; Roithová, Jana (referee)
This thesis deals with two independent topics. The first is focused on the study of reversible covalent interactions of a carbonyl group with alcohols and water forming hemiacetals (respectively hydrate) derived from pyrazine trifluormethylketone. The main research method in this part is the NMR spectroscopy and experimental results are also supported by quantum chemical calculations. The second topic aims to the preparation and the study of photochemical properties of three dihydropyrazines which exhibit fluorescence both in solution and solid phase. The fluorescence can be influenced by means of complexation by various metal ions. Prepared dihydropyrazines also show interesting values of the Stokes shift. The structure of these new compounds was confirmed by X-ray analysis.

National Repository of Grey Literature : 94 records found   beginprevious52 - 61nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.