National Repository of Grey Literature 20 records found  previous11 - 20  jump to record: Search took 0.00 seconds. 
Structural variability of cyclic cyanobacterial lipopeptides: their biosynthesis and features affecting their bioactivity
HÁJEK, Jan
This thesis is devoted to the diversity of cyanobacterial cyclic lipopeptides and their bioactivity. Special class of cyclic cyanobacterial lipopeptides puwainaphycins and minutissamides was studied in terms of their structural diversity, biosynthesis and structure-activity relationship. Chemical diversity of observed variants in cyanobacterial strains was correlated with the genetic background for their biosynthesis from which the probable cores of biosynthesis were inferred. Biological activity (mainly the cytotoxicity and anti-fungal activity) of major natural puwainaphycin and minutissamide variants was studied in detail. Finally, semi-synthetic puwainaphycin and minutissamide variants were prepared in order to study the relationship between distinct functional moieties and their effect on the bioactivity of the lipopeptide.
Electrospinning of bioglass and glass-ceramic fibers
Kozáková, Zdenka ; Šťastná, Eva (referee) ; Částková, Klára (advisor)
Bachelor thesis is focused on the preparation of fibers based on bioglass and glass ceramics. The theoretical part of the work summarizes the division and description of biomaterials and their use in biomedical applications. The main part of the work deals with the preparation of bioglass with a focus on the preparation by electrospinning. Experimental part is focused on the preparation of fibers based on bioglass by electrospinning. Different types of bioglass precursors were studied and their spinnability, morphology and bioactivity of the prepared fibers were assessed. The fibers were analyzed by scanning electron microscopy and interactions in simulated body fluid. Fibers prepared from bioglass 45S5 and polyvinylalcohol precursor were evaluated as promising for biomedical applications.
The influence of simulated body fluids on the apatite production
Horváthová, Lenka ; Beranová, Denisa (referee) ; Bartoníčková, Eva (advisor)
This bachelor thesis deals with the interaction of various simulated body fluids with ceramic biomaterials. It includes fluid preparation, sample preparation and subsequent analysis of their interaction. Individual samples of biomaterials were exposed to a simulated body fluid for a certain amount of time. After this time, a change in the calcium and phosphorus content of the solutions was determined. At the same time, an electron microscope analysis of sample surface was performed where the dependence of calcium and phosphorus changes was demonstrated. Electron microscopy analysis revealed the formation of new phases on the surface of the studied materials.
Silicon substituted calcium phosphate based bioceramic scaffolds
Karkuszová, Karina ; Šťastná, Eva (referee) ; Novotná, Lenka (advisor)
The theoretical part of this bachelor thesis summarizes the current state of knowledge of bioceramic materials based on calcium, phosphorus and silicon. More specifically, it focuses on calcium phosphates, the demands placed on them, the porosity of 3D foams, and biological properties such as biodegradation and bioactivity. 3D bioceramic calcium phosphate foam doped with silicon appears to be a suitable material for use in biomedical applications. It is the silicon that plays a role in the development of healthy bone and the formation of new tissue. Silicon substitutions are important in the field of investigation because they improve the bioassay of phosphate calcium. In the experimental part, calcium phosphate powders were first prepared by the hydroxyapatite and silica fusion reaction. Selected powder contents were 0; 0.1; 1, 2.5, 5, 10 and 20 wt.% SiO2. The samples were sintered at 1100 °C, 1200 °C and 1300 °C. The second part consisted in the preparation of 3D foams by direct penetration with polyurethane and the subsequent characteristics of phase composition, solubility and bioactivity. Bioceramic foams had a highly porous structure. For 42 days, sample behavior in Tris-HCl and simulated body fluid (SBF) was monitored. The results of the experiment have shown that the samples are bioactive and silicon substitution increases phosphate calcium solubility. Therefore, these materials are potentially useful for biomedical applications
Composite Dental Biomaterials - Structure, Analysis and Properties
Matoušek, Aleš ; Vaněk,, Jiří (referee) ; Lapčík,, Lubomír (referee) ; Cihlář, Jaroslav (advisor)
The aim of this work is to define relations between grain size and bioaktivity of oxide ceramics, specifically ZrO2, Al2O3 and HA. Ceramic materials with grain size from 100 nm up to 10 m, with various surface roughness, were tested for its bioactivity. Ceramography analysis was performed for all tested materials to precisely describe microstructures. Biological properties of the ceramic materials were tested via dilation tests directly in-vitro and by in-vitro extraction. Three cell culturing lines: osteoblast MG63, fibroblast L929, and epithelioid HeLa, were used for our testing. An influence of the grain size on the biological response was only found for the ceramic materials which had been thermally etched. The thermally etched nanocrystalline samples had larger areas covered by cells than ceramics with coarse grain microstructure. Biological tests on layered composites Al2O3×ZrO2 showed the cell selection determined by the type of material, where ZrO2 surfaces were preferably covered. Improved biological response of nanocrystalline ZrO2 was demonstrated on ceramic ZrO2, Al2O3 and SiO2 substrates with nanocrystalline coating of ZrO2. In this work a novel technological process for the formation of defect-free coatings was developed. Sintered coatings were tested using in-vitro technique with cell line HeLa, L929 and MG63 for up to 72 hours. The results of the biological tests of nanocrystalline coatings were consistent with results from the bulk nanocrystalline thermally etched ZrO2 ceramics.
Synthesis of foamed bioceramics for potential medical applications
Doboš, Petr ; Šoukal, František (referee) ; Palou, Martin (advisor)
Cílem práce byla příprava porézních vzorků HAP pro potenciálně medicínské aplikace. HAP byl připraven metodou sol-gel a precipitační. Vzorky HAP byly podrobeny analýze FTIR, XRD, SEM. Takto připravený HAP byl napěněn pomocí houbové metody s jasně definovanými póry a pomocí polymerního a skleněného expanzelu s různou distribucí a velikostí pórů. U výsledných napěněných vzorků byla vyhodnocena mikrostruktura a povrchová analýza pomocí SEM, zjištěna porozita pomocí Hg porozimetru a sledována bioaktivita in vitro v SBF. Byly zjištěny jasně definované makro, mezo a mikro póry při různé distribuci. U houbové metody pomocí sol-gel došlo k vytvoření jasně definovaných a pravidelných pórů s monodisperzní porozitou. Dominantní velikost póru byla stanovena v rozmezí 1–5 µm. Celková porozita byla stanovena na 63,5 % s celkovým povrchem 3,048 1 m/g. Precipitační metodou s polymerním expanzelem došlo k polydisperznímu rozložení pórů s třemi hlavními fázemi v rozmezí: 50–100 µm, 5–10 µm a 0,5–1 µm. Celková porozita byla stanovena na 67,6 % s celkovým povrchem 19,090 3 m/g. Bioaktivita výsledných napěněných vzorků in vitro byla sledována po dobu 7 dnů v připraveném SBF. Při napěnění sol-gel houbovou metodou nevznikla výsledná bioaktivní vrstva. U precipitační metody napěněné pomocí polymerního expanzelu vznikla nepravidelná bioaktivní vrstva. Výsledky byly naměřeny pomocí SEM analýzy.
Study of bioceramic materials on the base of calcium phosphates
Kolář, Martin ; Maca, Karel (referee) ; Cihlář, Jaroslav (advisor)
The literature search on the topic of Bioceramic materials focused in layered materials based on calcium phosphates was written up. Based on knowledge obtained, experiments of preparation of calcium phosphates layered materials based on calcium phosphates by spin-coating method focused in optimalization of layer application conditions were designed and carried out. Experiments of preparation of hydroxyapatite bulk ceramics by uniaxial pressing followed by heat treatment were also performed. Prepared layered and bulk ceramics were characterized from bioactivity point of view by testing of their interaction with simulated body fluid.
Bioactive ceramic foams – processing, properties testing and applications
Motyka, Jan ; Hadraba, Hynek (referee) ; Řehořek, Lukáš (advisor)
Porous materials for tissue engineering are novel group of materials. They provide some unique properties, namely bioactivity, biodegradability and osteoconductivity. Ceramics porous structure for bone substitutes have considerable potential for applications in medical surgery. But they have poor mechanical properties. Hence they are used for low bearing applications. Those are the reasons for extensive investigation of these materials, mainly in the last few years. Lots of production procedures exist, which leads to production of foams with various shapes and properties.
Preparation of bioceramic materials for medical applications
Doboš, Petr ; Šoukal, František (referee) ; Palou, Martin (advisor)
The aim of this work was to prepare hydroxyapatite powder by sol-gel and precipitation method. Then, the powders were pressed and sintered at 500 °C, 800 °C and 1100 °C. These samples of HAP were analyzed by FTIR, XRD, SEM methods. The microstructure measurement by SEM indicates that the size HAP particles varies from micro to nano meter. The average size of dominant particles is determined around 5 – 8 µm with surrounding fine particles of 1 µm size. The in vitro bioactivity of HAP samples was investigated by immersing them in Simulated Blood Fluid for 4 weeks. The work reports the result of mikrostructure analysis of samples after immersion. The bioactivity was influenced by the sintering temperature. It is evident, that the layer of the new hydroxyapatite phase formed during immersion on the surface of initial HAP samples changes with temperatures.
Cytotoxicity of the filamentous cyanobacteria in relation to its ecology
TOMEK, Petr
The aims of this study was to screen a cytotoxic activity in 53 strains of the genera Nostoc and Anabaena and to compare occurence of active isolates within different ecological groups. Selected cytotoxic strains were subjected to HPLC/MS analysis to identify their extracts composition. Isolates with strong cytotoxic effect containing unknown substances were fractionated to obtain pure fraction of this compound. Finally, the selected strains toxicity dependence on time and concentration was evaluated.

National Repository of Grey Literature : 20 records found   previous11 - 20  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.