Název:
Generating Semantic Networks from Natural Language using BERT
Autoři:
GRIFFO DUARTE, Raphael Typ dokumentu: Diplomové práce
Rok:
2025
Jazyk:
eng
Abstrakt: This master thesis proposes SemNet, a new method for constructing semantic networks from natural language text. It compares SemNet to the benchmark model Netts, demonstrating comparable performance while highlighting key differences attributed to specific modules within Netts. SemNet excels in efficiency and scalability, particularly when leveraging GPU acceleration, making it a promising foundation for subsequent natural language processing tasks. SemNet effectively utilizes a SRL BERT model however, limitations in capturing complex relationships beyond verb-based interactions were identified. A comprehensive literature review helped define the model's architecture, leading to the selection of BERT as the optimal foundation given the balance of size and scalability compared to large language models and supervised learning approaches.
Klíčová slova:
BERT; efficiency; natural language processing; Netts; scalability; semantic network generation; SemNet Citace: GRIFFO DUARTE, Raphael. Generating Semantic Networks from Natural Language using BERT. České Budějovice, 2025. diplomová práce (Mgr.). JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Přírodovědecká fakulta
Instituce: Jihočeská univerzita v Českých Budějovicích
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v digitálním repozitáři JČU. Původní záznam: http://www.jcu.cz/vskp/76929