Original title:
Reprezentace síťových toků s využitím neuronových sítí
Authors:
Pycz, Lukasz ; Jeřábek, Kamil (referee) ; Poliakov, Daniel (advisor) Document type: Bachelor's theses
Year:
2024
Language:
slo Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[slo][eng]
Táto bakalárska práca skúma aplikáciu metód samo-riadeného učenia (SSL) ako je maskovanie dát, miešanie poradia dát a využitie kontrastného učenia, na extrakciu zmysluplných reprezentácií z údajov o sieťovom toku, konkrétne s využitím datasetu CESNET TLS22 z CESNET DataZoo. Hlavným cieľom je vyvinúť robustné modely, ktoré zlepšia pochopenie a analýzu sieťových tokov prostredníctvom efektívneho učenia reprezentácie bez závislosti na označených údajoch. Výskum využíva výpočtový rámec PyTorch na návrh, tréning a hodnotenie výkonnosti modelov.
This thesis explores the application of self-supervised learning (SSL) methods such as data masking, data order shuffling, and contrastive learning, to extract meaningful representations from network flow data, specifically using the CESNET TLS22 dataset from CESNET DataZoo. The main goal is to develop a robust model that improves the understanding and analysis of network flows through effective representation learning without relying on labeled data. The research utilizes the PyTorch computational framework for designing, training, and evaluating the performance of the model.
Keywords:
CESNET TLS22 Dataset; Contrastive Learning; Data Masking; Data Representation; Feature Extraction; Network Flow Analysis; Network Security; Neural Networks; PyTorch; Self-Supervised Learning; Unsupervised Learning
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: https://hdl.handle.net/11012/246950