Original title:
Využitie Diffusion Modelov v Oblasti Deepfakes
Translated title:
Use of Diffusion Models in Deepfakes
Authors:
Trúchly, Dominik ; Malinka, Kamil (referee) ; Lapšanský, Tomáš (advisor) Document type: Bachelor's theses
Year:
2024
Language:
eng Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[eng][cze]
Deepfake je typ syntetického média vytvoreného pomocou sofistikovaných algoritmov strojového učenia, najmä hlbokých neurónových sietí. Ako príklad možno uviesť generatívne adverzné neurónové siete (GAN), ktoré sú schopné generovať obrázky, ktoré sú pre bežných jednotlivcov takmer nemožné odlíšiť od skutočnej reality. V dôsledku toho boli vyvinuté algoritmy detekcie hlbokých falošných správ, ktoré riešia tento rastúci problém. Tieto algoritmy využívajú pokročilé techniky strojového učenia a analyzujú rôzne funkcie v rámci obrázkov a videí, aby identifikovali nezrovnalosti alebo anomálie svedčiace o manipulácii. Táto práca skúma aplikáciu difúznych modelov, bežne používaných v digitálnom spracovaní obrazu na zvýšenie kvality obrazu znížením šumu a rozmazania, pre posilňovanie realizmu deepfakes. Využitím týchto modelov testujeme ich efekt na odhaľovanie deepfakes obrázkov pomocou deepfake detektorov.
A deepfake is a type of synthetic media created through sophisticated machine learning algorithms, particularly deep neural networks. As an example Generative adversarial neural networks (GANs), that are capable of generating images that are almost impossible for ordinary individuals to differentiate from genuine reality. Consequently, deepfake detection algorithms have been developed to address this growing concern. Leveraging advanced machine learning techniques, these algorithms analyze various features within images and videos to identify inconsistencies or anomalies indicative of manipulation. This thesis investigates the application of diffusion models, commonly utilized in digital image processing to enhance image quality by reducing noise and blurring, in bolstering the realism of deepfakes. By using these models, we test their effect on detecting deepfakes images using deepfake detectors.
Keywords:
biometrické systémy; deepfake; deepfake detekcia; difúzne modely; neurónové siete; biometrics systems; deepfake; deepfake detection; diffusion models; neural networks
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: https://hdl.handle.net/11012/248234