Original title:
Využití neoznačenačených dat pro segmentaci sítnice
Translated title:
Using unlabeled data for retinal segmentation
Authors:
Shemshur, Andrii ; Jakubíček, Roman (referee) ; Vičar, Tomáš (advisor) Document type: Bachelor's theses
Year:
2024
Language:
eng Publisher:
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií Abstract:
[eng][cze]
Tato bakalářská práce se zabývá vývojem a hodnocením pokročilých metod pro segmentaci lékařských snímků v kontextu omezených trénovacích dat. Studie zkoumá techniky učení pod dohledem využívající konvoluční neuronové sítě (CNN), přenosové učení s předtrénovanými modely a strategie učení s částečným dohledem. Jako základní model byl použit model konvoluční neuronové sítě (CNN) s dohledem založený na architektuře U-Net, který dosáhl koeficientu Dice 77,6% a průniku nad sjednocením (IoU) 63,4%. Použití přenosového učení pomocí kodéru ResNet34 předtrénovaného na síti ImageNet vedlo k výraznému zlepšení výkonu s koeficientem Dice 81,9%, IoU 69,3% a přesností 96,7%. Kromě toho byly ke zvýšení výkonu modelu použity strategie učení s částečným dohledem, včetně pseudoznačení a předtrénování denoizace. Přístup pseudoznačení přinesl koeficient Dice 81,7% a IoU 69,1%, čímž prokázal účinnost využití neoznačených dat. Přístup před tréninkem denoizace prokázal robustní výkonnost a dosáhl koeficientu Dice 80,3% a IoU 67,0%, a to i v přítomnosti zašuměných a neoznačených dat. Tyto výsledky podtrhují potenciál transferového učení a poloprovozních metod pro zvýšení přesnosti segmentace při analýze lékařských snímků. Poskytují solidní základ pro budoucí výzkum v této oblasti.
This bachelor's thesis is concerned with the development and evaluation of advanced methods for medical image segmentation in the context of limited training data. The study examines supervised learning techniques employing Convolutional Neural Networks (CNNs), transfer learning with pre-trained models, and semi-supervised learning strategies. A supervised convolutional neural network (CNN) model based on the U-Net architecture was employed as the baseline, achieving a Dice coefficient of 77.6\% and an intersection over union (IoU) of 63.4%. The application of transfer learning using a ResNet34 encoder pre-trained on ImageNet led to a notable improvement in performance, with a Dice coefficient of 81.9%, an IoU of 69.3%, and an accuracy of 96.7%. Furthermore, semi-supervised learning strategies, including pseudo-labeling and denoising pretraining, were employed to enhance the model's performance. The pseudo-labeling approach yielded a Dice coefficient of 81.7% and an IoU of 69.1%, thereby demonstrating the efficacy of leveraging unlabeled data. The denoising pretraining approach demonstrated robust performance, achieving a Dice coefficient of 80.3% and an IoU of 67.0%, even in the presence of noisy and unlabeled data. These outcomes underscore the potential of transfer learning and semi-supervised methods to enhance segmentation accuracy in medical image analysis. They provide a robust foundation for future research in this field.
Keywords:
konvoluční neuronové sítě; pseudoznačení; předtrénování denoisingu; ResNet34; Segmentace lékařských snímků; snímky sítnice; U-Net; učení s přenosem; učení s částečným dohledem; Convolutional Neural Networks; Denoising Pretraining; Medical Image Segmentation; Pseudo-labeling; ResNet34; Retinal Images; Semi-supervised Learning; Transfer Learning; U-Net
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: https://hdl.handle.net/11012/246795