Original title:
Implementace rozpoznávání gest na ARM jako alternativa tradičního ovládání zařízení
Translated title:
Implementing gesture recognition on ARM as an alternative to traditional device control
Authors:
Gajdošík, Richard ; Zbořil, František (referee) ; Kočí, Radek (advisor) Document type: Bachelor's theses
Year:
2024
Language:
eng Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[eng][cze]
Cieľom tejto bakalárskej práce je vývoj a implementácia systému na rozpoznávanie gest s využitím architektúry ARM, konkrétne s použitím dosky i.MX 93 a TensorFlow Lite. Projekt sa zameriava na aplikáciu neurónových sietí pre rozpoznávanie gest rúk, čím poskytuje alternatívu k tradičným metódam ovládania zariadení. Dôležitou súčasťou práce je rozsiahla analýza existujúcich riešení rozpoznávania gest, zameraná na identifikáciu ich silných stránok a možných vylepšení. Práca detailne opisuje proces navrhovania, vývoja a optimalizácie modelu na rozpoznávanie gest v reálnom čase, špeciálne prispôsobeného pre čipy ARM s dôrazom na efektivitu a výkon. Okrem toho práca aj obsahuje vytvorenie demonštračnej aplikácie, ktorá vizuálne reprezentuje rozpoznané gestá. Užívateľské testovanie je uskutočnené na hodnotenie praktickosti a užívateľského zážitku systému rozpoznávania gest, čo poskytuje cennú spätnú väzbu pre budúce vylepšenia.
This bachelor's thesis focuses on the development and implementation of a gesture recognition system on ARM architecture, utilizing the i.MX 93 board and TensorFlow Lite. The project is grounded in the application of neural networks for the recognition of hand gestures, offering an alternative to traditional device control methods. An integral part of the work involves a comprehensive analysis of existing gesture recognition solutions, identifying their strengths and potential improvements. The thesis elaborates on the design, development, and optimization of a real-time gesture recognition model specifically for ARM chips, emphasizing efficiency and performance. Additionally, the thesis covers the creation of a demonstrative application that visually represents recognized gestures. User testing is conducted to evaluate the practicality and user experience of the gesture recognition system, providing valuable feedback for future enhancements.
Keywords:
ARM Architektúra; Hlboké učenie; i.MX 93; Inferencia v reálnom čase; Neurónové siete; Rozpoznávanie gest; Spracovanie obrazu; Strojové učenie; TensorFlow Lite; Vstavané systémy; ARM Architecture; Deep Learning; Embedded Systems; Gesture Recognition; i.MX 93; Image Processing; Machine Learning; Neural Networks; Real-time Inference; TensorFlow Lite
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: https://hdl.handle.net/11012/247496