Název:
Stochastic version of the arc-length method
Autoři:
Náprstek, Jiří ; Fischer, Cyril Typ dokumentu: Příspěvky z konference Konference/Akce: Engineering mechanics 2024 /30./, Milovy (CZ), 20240514
Rok:
2024
Jazyk:
eng
Abstrakt: The solution of a nonlinear algebraic system using the incremental method, based on pre-defined loading steps, fails in the vicinity of local extrema as well as around bifurcation points. The solution involved the derivation of the so-called ’Arc-Length’ method. Its essence lies in not incrementing the system parameter or any of the independent variables but rather the length of the response curve. The stochastic variant of this method allows for working with a system where system parameters include random imperfections. This contribution presents a variant that tracks the first two stochastic moments. Even in this simple case, interesting phenomena can be observed, such as the disappearance of the energy barrier against equilibrium jump due to random imperfections in the system.
Klíčová slova:
continuation; numerical method; random imperfection; stochastic arc-length method Číslo projektu: GA24-13061S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Engineering mechanics 2024. Book of full texts, ISBN 978-80-214-6235-9, ISSN 1805-8248
Instituce: Ústav teoretické a aplikované mechaniky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: https://hdl.handle.net/11104/0353609