Original title:
Automatická detekce zlomení nástroje při děrování plechů
Translated title:
Automatic detection of tool fracture in metal sheet punching
Authors:
Kluz, Jan ; Rajchl, Matej (referee) ; Brablc, Martin (advisor) Document type: Bachelor's theses
Year:
2022
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta strojního inženýrství Abstract:
[cze][eng]
Tato bakalářská práce se zabývá návrhem a následnou implementací systému automatické detekce zlomení razníku při procesu děrování plechů razníkem o malých rozměrech (0.5 x 12 mm). Navrhovaný systém má význam pro výrazné ulehčení práce operátora, zrychlení procesu výroby a rovněž šetření finančních prostředků firmy. V první části práce je předvedena řešena problematika. Následuje stručný teoretický úvod do oblasti digitálního zpracování signálu. V další části jsou prezentovány metody vyvinuté za účelem detekce signálu zlomení včetně pomocných algoritmů. Jedná se o metodu frekvenčních špiček, frekvenčních pásem, autokorelace, metody frekvenční korelace, klasifikaci strojovým učením včetně hlubokého strojového učení. Z použitých metod dosáhla nejlepších výsledků metoda hlubokého strojového učení neuronové sítě. Pro účely navržení klasifikačního systému byly použity charakteristiky z časové a frekvenční oblasti. Je popsána rovněž možnost prediktivní údržby nástroje včetně rešerše této oblasti v moderním průmyslu. Prezentovány jsou pak dosažené výsledky a jejich stručné zhodnocení. V poslední části se nachází popis procesu implementace celého systému do realtime podoby a jeho propojení s děrovacím lisem pomocí mikrokontroléru Arduino Uno a vytvořeného vstupně-výstupního signálového obvodu. Navrhovaný systém se povedlo sestavit, otestovat a uvést do zkušebního provozu.
This Bachelor thesis deals with the design and subsequent implementation of the realtime fault detection system during the sheet metal punching process with a tool of small dimensions (0.5 × 12 mm). The proposed system is important for significant ease of the operator's work, acceleration of the process of production, as well as saving of the company finance budget. The first part of this thesis deals with the theoretical background of the studied issue. The following part is a brief theoretical introduction to the field of digital signal processing. The next chapter presents methods developed for fault signals detection including speed enhancing and data flow reducing algorithms. The main examined methods were: frequency peaks, frequency bands, autocorrelation, frequency correlation methods and machine learning including deep machine learning. Deep machine learning of the neural network achieved the best results overall. Features from time and frequency domain were used for purposes of creating the classification model using machine learning. The possibility of developing the predictive maintenance system is also described, including research of this area in a modern industry. Subsequently, the achieved results and their evaluation are presented. The end of this thesis is dedicated to the description of the implementation of classification system into realtime form and connecting this system to the punching press computer using Arduino Uno microcontroller and basic signal control electronics. The proposed system has been successfully assembled, tested and put into on-site testing.
Keywords:
Arduino Uno; Digital signal processing; flowcharts; machine learning; predictive maintenance; realtime system; Arduino Uno; Digitální zpracování signálů; prediktivní údržba; realtime systém; stavové diagramy; strojové učení
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/207772