Original title:
Rozpoznávání ručně psaného textu pomocí konvolučních sítí
Translated title:
Convolutional Networks for Handwriting Recognition
Authors:
Sladký, Jan ; Kišš, Martin (referee) ; Hradiš, Michal (advisor) Document type: Bachelor's theses
Year:
2020
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[cze][eng]
Tato práce se zabývá rozpoznáváním ručně psaného textu za pomoci konvolučních neuronových sítí. Ze současných metod byl vybrán model sítě skládající se z konvolučních a rekurentních sítí s Connectionist Temporal Classification. Do takovéhoto modelu byl následně implementován prvek Vertical Attention Module, který vybírá relevantní informace v každém sloupci odpovídající textu na obrázku. Tento modul byl následně pomocí experimentů porovnáván s dalšími možnostmi vertikální agregace mezi konvoluční a rekurentní sítí. Experimenty probíhaly na datové sadě obsahující přes 80 000 řádků textu z českých dopisů 20. století. Výsledky ukazují, že Vertical Attention Module dosahuje téměř vždy nejlepších výsledků na všech použitých typech konvolučních sítí. Výsledná síť dosáhla nejlepšího výsledku při chybě 8,9% na znak. Přínosem této práce je neuronová síť s nově zavedeným prvkem, která dokáže rozpoznávat řádky textu.
This thesis deals with handwriting recognition using convolutional neural networks. From the current methods, a network model was chosen to consist of convolutional and recurrent neural networks with the Connectist Temporal Classification. The Vertical Attention Module, which selects the relevant information in each column corresponding to the text in the figure was subsequently implemented in such a model. Then, this module was compared with other possibilities of vertical aggregation between convolutional and recurrent networks. The experiments took place on a data set containing over 80,000 lines of text from Czech letters from the 20th century. The results show that the Vertical Attention Module almost always achieves the best results on all used types of convolution networks. The resulting network achieved the best result with 8,9% of the character error rate. The contribution of this work is a neural network with a newly introduced element that can recognize lines of text.
Keywords:
CNN; Connectist Temporal Classificatio; convolutional neural network; CTC; Handwritten text recognition; HTR; recurrent neural network; RNN; VAM; vertical aggregation; Vertical Attention Module; CNN; Connectist Temporal Classificatio; CTC; HTR; konvoluční neuronové sítě; rekurentní neuronové sítě; RNN; Rozpoznávání ručně psaného textu; VAM; vertikální agregace; Vertical Attention Module
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/194947