Original title:
Detekce a rozměření elektronového svazku v obrazech z TEM
Translated title:
Detection and measurement of electron beam in TEM images
Authors:
Polcer, Simon ; Vičar, Tomáš (referee) ; Chmelík, Jiří (advisor) Document type: Master’s theses
Year:
2020
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií Abstract:
[cze][eng]
Diplomová práce se zabývá automatickou detekcí a rozměřením elektronového svazku ve snímcích z transmisního elektronového mikroskopu. V úvodní části práce je popsána konstrukce a nejdůležitější součástky elektronového mikroskopu. Dále jsou v teoretické části shrnuty módy osvětlení fluorescenčního stínítka, které vznikají při práci na mikroskopu. K automatické detekci elektronového svazku jsou použity metody strojového učení, konkrétně konvoluční neuronová síť U-Net. Následné rozměření elektronového svazku je provedeno na základě aproximace oblasti elektronového svazku elipsou, kde parametry elipsy udávají rozměry svazku. Jelikož při učení neuronových sítí je potřeba mít dostatečně rozsáhlou databázi snímků, jsou v práci popsány metody umělého rozšíření databáze. V práci je navržena vlastní augmentační metoda, která využívá geometrické transformace a aplikuje je na základě módu osvětlení fluorescenčního stínítka. V závěru práce jsou shrnuty a diskutovány dosažené výsledky. Úspěšnost algoritmu je zhodnocena na variabilní skupině snímků pokrývající jednotlivé módy osvětlení fluorescenčního stínítka. Celková úspěšnost dosahuje 0,815 hodnoty DICE koeficientu, který udává míru překryvu dvou oblastí. Práce je kompletně zpracována v programovém prostředí Python.
This diploma thesis deals with automatic detection and measurement of the electron beam in the images from a transmission electron microscope (TEM). The introduction provides a description of the construction and the main parts of the electron microscope. In the theoretical part, there are summarized modes of illumination from the fluorescent screen. Machine learning, specifically convolution neural network U-Net is used for automatic detection of the electron beam in the image. The measurement of the beam is based on ellipse approximation, which defines the size and dimension of the beam. Neural network learning requires an extensive database of images. For this purpose, the own augmentation approach is proposed, which applies a specific combination of geometric transformations for each mode of illumination. In the conclusion of this thesis, the results are evaluated and summarized. This proposed algorithm achieves 0.815 of the DICE coefficient, which describes an overlap between two sets. The thesis was designed in Python programming language.
Keywords:
convolutional neural network; data augmentation; electron beam; fluorescent screen; geometric transformations; transmission electron microscopy; augmentace databáze; elektronový svazek; fluorescenční stínítko; geometrické transformace; konvoluční neuronová síť; transmisní elektronový mikroskop
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/189154