Název:
Využití vybraných metod umělé inteligence pro nalezení malých povodí nejvíce ohrožených povodněmi z přívalových dešťů
Překlad názvu:
Use of selected artificial intelligence methods for finding small watersheds most at risk of flash floods
Autoři:
Ježík, Pavel ; Fošumpaur, Pavel (oponent) ; Hlavčová,, Kamila (oponent) ; Starý, Miloš (vedoucí práce) Typ dokumentu: Disertační práce
Rok:
2016
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta stavební
Abstrakt: [cze][eng]
Přívalové deště se na našem území mohou vyskytovat prakticky kdekoli. V současné době lze jejich výskyt odhadnout s určitým časovým předstihem, ale jejich předpovídaná lokalizace je velmi problematická. Nynější prostředky pro hledání ohrožených povodí se soustřeďují především na operativní vyhodnocování aktuální meteorologické situace a zpracování srážkové předpovědi na nejbližší hodiny (tzv. nowcasting). Práce se zabývá odlišným způsobem hledání potenciálně ohrožených území, kdy jsou vyhodnocovány statistické veličiny za dlouhé období (N-leté vody a dešťové charakteristiky) a jsou dány do souvislostí s vlastnostmi konkrétních povodí. Celá problematika je řešena mimo situaci aktuálního ohrožení, jedná se o tzv. off-line řešení. V práci je prezentován model sestavený na bázi vybraných metod umělé inteligence, který tvoří jádro koncové mapové aplikace. Užití modelu a koncové aplikace se předpokládá v oblasti, kde se rozhoduje o toku financí v souvislosti s protipovodňovou ochranou. Model se soustřeďuje na přívalové deště a povodně jimi způsobené.
In our region, heavy rains may occur virtually everywhere. Nowadays there are instruments to predict these events in sufficient advance, but without precise localisation, which is a problem. Present instruments for searching endangered watersheds are focused on operative evaluation of meteorological situation and actual precipitation forecast processing (nowcasting). The thesis brings quite different approach. Potentially endangered areas are detected with evaluation of long-term statistical variables (N-year discharges and rain characteristics) and properties of specific watershed. The whole issue is handled out of situation of actual danger, this attitude is so called off-line solution. The thesis describes a model based on selected artificial intelligence methods. The model forms the core of final map application. The use of model and final application is supposed to be used in area of preventive flood protection, and related investment decision-making. The model focuses on heavy rains and flash floods.
Klíčová slova:
fuzzy logika; malé povodí; modelování; povodně z přívalových dešťů; Přívalové deště; teorie možnosti; umělá inteligence.; artificial intelligence.; flash floods; fuzzy logics; Heavy rains; modelling; possibility theory; small watershed
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/69194