Original title:
Hluboké neuronové sítě pro rozpoznání tváří ve videu
Translated title:
Deep Learning for Facial Recognition in Video
Authors:
Mihalčin, Tomáš ; Sochor, Jakub (referee) ; Hradiš, Michal (advisor) Document type: Master’s theses
Year:
2018
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[cze][eng]
Táto diplomová práca sa zameriava na rozpoznanie tvári z videa, konkrétne na spôsob agregácie príznakových vektorov, do jedného diskriminatívneho vektora, tiež nazývaného šablóna. Skúma problém extrémne natočených tvárí, vzhľadom na presnosť verifikácie. Ďalej, porovnáva vzťah medzi šablónami tvorenými vektormi extrahovanými zo snímkov z videa a vektormi z fotografií. Navrhnutá hypotéza je testovaná pomocou dvoch hlbokých konvolučných neurónových sietí a to so známym modelom VGG-16 siete a modelom siete nazývanej Fingera, poskytnutej od firmy Innovatrics. V rámci práce, bolo vykonaných niekoľko experimentov, ktorých výsledky potvrdzujú úspešnosť navrhnutého postupu. Ako metrika presnosti bola zvolená ROC krivka. K práci s neurónovými sieťami bol použitý framework Caffe.
This diploma thesis focuses on a face recognition from a video, specifically how to aggregate feature vectors into a single discriminatory vector also called a template. It examines the issue of the extremely angled faces with respect to the accuracy of the verification. Also compares the relationship between templates made from vectors extracted from video frames and vectors from photos. Suggested hypothesis is tested by two deep convolutional neural networks, namely the well-known VGG-16 network model and a model called Fingera provided by company Innovatrics. Several experiments were carried out in the course of the work and the results of which confirm the success of proposed technique. As an accuracy metric was chosen the ROC curve. For work with neural networks was used framework Caffe.
Keywords:
aggregation; convolution; deep convolutional neural network; face recognition; framework Caffe; machine learning; agregácia; framework Caffe; hlboké konvolučné neurónové siete; konvolúcia; rozpoznávanie tvárí; strojové učenie
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/84935