Název:
Rozpoznání typu vozidla z dohledové kamery
Překlad názvu:
Fine-Grained Vehicle Recognition from Traffic Surveillance Camera
Autoři:
Mencner, Pavel ; Špaňhel, Jakub (oponent) ; Sochor, Jakub (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2018
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Cílem této práce je detekce vozidel v obraze z dopravní dohledové kamery a jemná klasifikace jejich typu (výrobce a model). V práci je implementována normalizační metoda Unpack, která slouží pro transformaci obrazu vozidla do jeho zdánlivé rovinné reprezentace, za účelem zvýšení úspěšnosti klasifikátoru. Metoda Unpack využívá pro normalizaci 3D bounding box vozidla, který je v testovací fázi sestaven z informací o kontuře a směru k úběžníkům vozidla. Součástí práce je srovnání přesnosti metody přímé a Unpack klasifikace. Řešení se skládá z více na sebe navazujících částí, které využívají konvolučních neuronových sítí. Tyto části jsou: detekce vozidel v obraze, odhad směru k úběžníkům scény řešený jako klasifikační úloha, detekce kontury vozidel s využitím konvoluční Encoder-Decoder sítě a jemná klasifikace typu vozidel. Pomocí klasifikace s využitím metody Unpack bylo dosaženo zvýšení přesnosti systému o 2% proti přímé klasifikaci, dosahujíc výsledné úspěšnosti 86%. Výsledkem práce je systém jemné klasifikace typu vozidel pracující se záznamem z dohledové kamery bez omezení pozorovacích úhlů.
The aim of this thesis is image based detection of vehicles from traffic surveillance camera and fine-grained vehicle type recognition (manufacturer and model). In the thesis the Unpack normalization method is implemented which transforms the vehicle image into its apparent flat representation in order to increase the classifier's success rate. The Unpack method make use of 3D bounding box of the vehicle. This bounding box is constructed during test period using the information of vehicle contour and direction toward vanishing points. The thesis involve accuracy comparison between direct and Unpack classification methods. The proposed solution is based on several related parts that benefit from convolutional neural networks. These parts are: vehicle detection from image data, estimation of the directions towards vanishing points solved as classification task, vehicle contour detection using convolutional Encoder-Decoder network and fine-grained vehicle type classification. Using Unpack based classification the 2% accuracy improvement against direct classification has been achieved, resulting in 86% overall success rate. The outcome of this thesis is fine-grained vehicle classification system that works with traffic surveillance video without any viewpoint limitations.
Klíčová slova:
3D bounding box; analýza dopravy; detekce vozidel; dopravní dohledová kamera; jemná klasifikace typu vozidel; Keras; konvoluční neuronové sítě; odhad kontury objektu; odhad směru k úběžníkům; OpenCV; Python; Tensorflow; Unpack; zpracování obrazu; 3D bounding box; convolutional neural network; fine-grained vehicle type recognition; image processing; Keras; object contour estimation; OpenCV; Python; Tensorflow; traffic analysis; traffic surveillance camera; vanishing point estimation; vehicle detection
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/85253