Název:
Redukce šumu audionahrávek pomocí hlubokých neuronových sítí
Překlad názvu:
Audio noise reduction using deep neural networks
Autoři:
Talár, Ondřej ; Galáž, Zoltán (oponent) ; Harár, Pavol (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2017
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstrakt: [cze][eng]
Práce se zabývá možností použití hluboké rekurentní neuronové sítě typu Long Short-Term Memory pro robustní odšumování zarušeného signálu. LSTM je v současnosti velice lákavá architektura díky své vlastnosti pamatovat si předchozí váhy, a nebo je upravovat nejen dle použitých algoritmů, ale také zkoumáním změn v sousedních buňkách. V práci je popsán výběr výchozího datasetu a použitých šumů spolu s vytvořením optimálních testovacích dat. Pro trénování sítě je zvolen framework KERAS pro jazyk Python a jsou prozkoumány a popsány kandidátní sítě pro možné řešení.
The thesis focuses on the use of deep recurrent neural network, architecture Long Short-Term Memory for robust denoising of audio signal. LSTM is currently very attractive due to its characteristics to remember previous weights, or edit them not only according to the used algorithms, but also by examining changes in neighboring cells. The work describes the selection of the initial dataset and used noise along with the creation of optimal test data. For creation of the training network is selected KERAS framework for Python and are explored and discussed possible candidates for viable solutions.
Klíčová slova:
hluboké učení; KERAS; Long Short-Term Memory (LSTM); odšumování; rekurentní neuronová síť; tvorba datasetu; created dataset; deep learning; denoising; KERAS; Long Short-Term Memory (LSTM); reccurent neural network
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/65788