Original title:
Electrochemická syntéza, charakterizace a aplikace nových typů 1D oxidických struktur přechodných kovů
Translated title:
Electrochemical synthesis, characterization and applications of new types of 1D valve metal oxide nanostructures
Authors:
Alijani, Mahnaz ; Prof. Lluis F. Marsal (referee) ; Tsuchiya, Hiroaki (referee) ; Macák, Jan (advisor) Document type: Doctoral theses
Year:
2023
Language:
eng Publisher:
Vysoké učení technické v Brně. CEITEC VUT Abstract:
[eng][cze]
Tato disertační práce představuje komplexní výzkum růstu TiO2 nanotrubicových (TNT) vrstev s vysokým poměrem délka/šířka (HAR) a jejich využití v pokročilých světelně-sensorických aplikacích. Výzkumné výstupy dosažené během tohoto doktorského studia zahrnují sérii článků, které se zabývají výzkumem syntézy a charakterizace vrstev HAR TNT na jedné straně a hodnocení výkonu těchto vrstev v různých senzorických modalitách na straně druhé. Počáteční studie se zaměřuje na anodizaci Ti fólií za účelem získání vrstev HAR TNT pomocí speciálně formulované elektrolytu obsahujícího NH4F/H2O/ethylene glycol s přídavkem mléčné kyseliny (LA). Výsledky ukazují, že regulací stáří a složení elektrolytu a použitím dostatečně vysokých potenciálů lze dosáhnout vrstev HAR TNT s vysokým poměrem délka/šířka (přibližně 450) v pozoruhodně krátkých časech anodizace ( 15 minut) ve srovnání s literaturou dostupnou před zahájením této disertační práce. Tento přístup nabízí slibnou cestu k získání robustních vrstev TNT bez dielektrického průrazu, eliminující potřebu řízení dalších procesních parametrů, jako je ohřev nebo ochlazování elektrolytu. Na základě úspěšných výsledků byla v následující práci zkoumána galvanostatická anodizace pro získání vrstev HAR TNT v elektrolytu obsahujícím LA. Bylo zjištěno, že mléčná kyselina účinně předchází dielektrickému průrazu při použití vysokých proudových hustot. Tento nález poukazuje na potenciál galvanostatické anodizace pro výrobu vrstev HAR TNT v podstatně zkrácených časech anodizace při pokojové teplotě. Navazující výzkum v disertační práci se zabývá mikrovlnnou fotoelektrickou vodivostí TNT vrstev s různou tloušťkou (15, 50, 80 a 110 m) při frekvencích X-pásma (~8 GHz) pro aplikace v senzorice a bezdrátové vesmírné komunikaci. Integrace anatasových TNT vrstev s rovinným rezonátorem se rozděleným kroužkem (SRR) umožňuje hodnocení jejich mikrovlnné fotoelektrické vodivosti. Experimentální výsledky odhalily významné variace v rezonanční amplitudě a frekvenčních odezvách TNT vrstev, přičemž TNT vrstvy o tloušťce 80 m vykazovaly nejvyšší citlivost. Byly stanoveny korelace mezi účinností fotoelektrické vodivosti, velikostí krystalitů a tloušťkou vrstev TNT, což podporuje využití optimalizovaných vrstev TNT pro co nejlepší mikrovlnného snímání. Kromě toho práce zkoumá vrstvy TNT na SRR pro detekci viditelného světla. Depozicí CdS tenkých vrstev na TNT vrstvy pomocí technologie depozice atomárních vrstev (ALD) se TNT vrstvy stávají velmi citlivé ve viditelné oblasti spektra, což umožňuje efektivní detekci UV a viditelného světla a detekci světlem indukovaných změn dielektrických vlastností TNT vrstev. Experimentální výsledky souhlasí s teoretickými modely a zdůrazňují výjimečný potenciál senzorů založených na TNT při detekci nebezpečí, monitorování znečištění, analýze materiálů a světelné komunikaci mezi satelity. Celkově tato práce poskytuje komplexní porozumění o růstu HAR TNT vrstev a jejich schopnostem pro pokročilé senzorické aplikace. Získané poznatky z tohoto výzkumu přispějí k rozvoji senzorů založených na nanomateriálech a otevírají nové možnosti jejich využití v různých odvětvích a nových technologiích.
This thesis presents a comprehensive investigation of the growth of high-aspect-ratio (HAR) TiO2 nanotube (TNT) layers and their application in advanced light sensing technologies. The research outputs achieved during this Ph.D. study encompass a series of papers that collectively explore the synthesis and characterization of HAR TNT layers on one hand side, and performance evaluation of these layers in various sensing modalities on the other side. The initial study focuses on the successful anodization of Ti foil to obtain HAR TNT layers using a specially formulated electrolyte containing NH4F/H2O/ethylene glycol, with the addition of lactic acid (LA). The results demonstrate that by controlling the electrolyte age and composition, together with the application of sufficiently high potentials, HAR TNT layers with high aspect ratio (of approximately 450) can be achieved within remarkably short anodization times ( 15 minutes) compared to the literature available before the work on this thesis begun. This approach offers a promising pathway to obtain robust TNT layers without dielectric breakdown, eliminating the need for additional process control, such as heating or cooling of the electrolyte. Building up on the successful anodization results, the subsequent investigation explored the galvanostatic anodization for obtaining HAR TNT layers in an LA-containing electrolyte. It was observed that lactic acid effectively prevents dielectric breakdown when high current densities are applied. This finding highlights the potential of galvanostatic anodization to produce HAR TNT layers in significantly reduced anodization times at room temperature. Expanding the research scope, the thesis delves into the microwave photoconductivity of TNT layers with different thicknesses (15, 50, 80, and 110 m) at X-band frequencies (~8 GHz) for applications in sensing and wireless space communication. The integration of anatase TNT layers with a planar split ring resonator (SRR) microwave resonator enables the evaluation of their microwave photoconductivity performance. Experimental results revealed significant variations in the resonant amplitude and frequency responses of the TNT layers, with the 80 m thick TNT layers demonstrating the highest sensitivity. Correlations were established between the photoconductivity efficiency, crystallite size, and thickness of the TNT layers, supporting the development of optimized TNT layers for enhanced microwave sensing capabilities. Furthermore, the thesis explores TNT layers on SRR for visible light detection. By sensitizing the TNT layers to the visible spectral region through the deposition of a CdS coating using Atomic Layer Deposition (ALD), the results demonstrate effective detection of ultraviolet (UV) light, visible (VIS) light and light-induced variations in the dielectric properties of TNT layers. The experimental findings align with theoretical models and highlight the clearly outstanding potential of TNT-based sensors in hazard detection, pollution monitoring, material analysis, and light-based satellite-to-satellite communication. Overall, this thesis provides a comprehensive understanding of HAR TNT layers and their capabilities for advanced sensing applications. The knowledge gained from this research will contribute to the advancement of nanomaterial-based sensors and opens up new possibilities for their utilization in various industries and emerging technologies.
Keywords:
anodizace; detekce UV světla; sensorické aplikace; TiO2 nanotrubicové vrstvy; vysoký poměr stran; anodization; high aspect ratio; sensing application; TiO2 nanotube layers; UV detection.
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/214126