Název:
Detection of Diabetic Retinopathy using Deep Learning and Transfer Learning Techniques with Oversampling to Address Imbalanced Dataset
Autoři:
RANĐELOVIĆ, Teodora Typ dokumentu: Bakalářské práce
Rok:
2023
Jazyk:
eng
Abstrakt: The study aims to develop a system for detecting diabetic retinopathy using deep learning. In this study I have explored transfer learning with four distinct models and addressed the issue of an unbalanced dataset with oversampling. The final experiment achieved a significant improvement in accuracy and quadratic kappa score. The study highlights the potential of deep learning and the importance of addressing dataset imbalances for accurate results.
Klíčová slova:
accuracy; comparative analysis; Convolutional neural network; Deep learning; diabetic macular edema; Diabetic Retinopathy; Image classification; medical imaging; oversampling; quadratic kappa score; retinal fundus photographs; Transfer learning Citace: RANĐELOVIĆ, Teodora. Detection of Diabetic Retinopathy using Deep Learning and Transfer Learning Techniques with Oversampling to Address Imbalanced Dataset. České Budějovice, 2023. bakalářská práce (Bc.). JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Přírodovědecká fakulta
Instituce: Jihočeská univerzita v Českých Budějovicích
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v digitálním repozitáři JČU. Původní záznam: http://www.jcu.cz/vskp/72690