Original title:
Využití strojového učení k rozpoznání pohybu feederového prutu
Translated title:
Exploitation of Machine Learning for Identification of Feeder Rod Movement
Authors:
Vele, Patrik ; Vašíček, Zdeněk (referee) ; Šimek, Václav (advisor) Document type: Master’s theses
Year:
2022
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[cze][eng]
Cílem této diplomové práce je vytvořit zařízení, které využívá metody strojového učení k rozpoznávání pohybů feederového rybářského prutu na základě dat z inerciální měřící jednotky. Úvodní část je věnována rybolovné technice feeder, výběru důležitých pohybů a možnostem upevnění detekčního zařízení na prut. Následuje vytvoření teoretického základu v oblasti strojového učení, seznámení s inerciální měřicí jednotkou a problematikou klasifikace. Obdržené znalosti jsou použity k výběru vhodných technik pro řešení úlohy rozpoznávání pohybů prutu. V praktické části je navrženo a vytvořeno detekční zařízení založené na platformě ESP32. To je nejprve používáno jako snímač pohybu, který v kombinaci se zpracováním naměřených hodnot slouží jako generátor trénovací datové sady. Práce pokračuje implementací konvoluční neuronové sítě, procesem učení na vytvořené datové sadě a integrací nejúspěšnějšího modelu do detekčního zařízení. Závěr je věnován testování v praxi, vyhodnocení a možnostem budoucího vývoje. Výsledkem je malé, bateriově napájené zařízení, které po připevnění na libovolný feederový prut poskytuje vysoce úspěšnou detekci všech klíčových pohybů během lovu. Navíc díky bezdrátové komunikaci přes ESP-NOW umožňuje odesílat výsledky na různá zařízení.
The aim of this diploma thesis is to create a device that uses machine learning methods to recognize the movements of a feeder fishing rod based on data from an inertial measurement unit. The introductory part is devoted to the feeder fishing technique, the selection of important movements and the possibilities of attaching the detection device to the rod. This is followed by the creation of a theoretical basis in the field of machine learning, familiarization with the inertial measurement unit and the issue of classification. The acquired knowledge is used to select appropriate techniques for solving the task of recognizing the movements of the rod. In the practical part, a detection device based on the ESP32 platform is designed and created. This is initially used as a motion sensor, which, in combination with the processing of the measured values, serves as a generator of a training data set. The work continues with the implementation of the convolutional neural network, the learning process on the created dataset and the integration of the most successful model into the detection device. The conclusion is devoted to testing in practice, evaluation and possibilities of future development. The result is a small, battery-powered device that, when attached to any feeder rod, provides highly successful detection of all key movements during the hunt. In addition, thanks to wireless communication via ESP-NOW, it is possible to send the results to various devices.
Keywords:
convolution neural network; dataset; embedded system; ESP-NOW; ESP32; Feeder; Google Colaboratory; machine learning; movement detection; PlatformIO.; TensorFlow Lite; Tiny Machine Learning; datová sada; detekce pohybu; ESP-NOW; ESP32; Feeder; Google Colaboratory; konvoluční neuronová síť; PlatformIO.; strojové učení; TensorFlow Lite; Tiny Machine Learning; vestavěný systém
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/207468