Original title: Transfer Learning For Deep Convolutional Neural Network From Rgb To Ir Domain
Authors: Ligocki, Adam ; Jelínek, Aleš
Document type: Papers
Language: eng
Publisher: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract: In this paper, we are presenting a proof of concept of our system for training of the YOLOv3 neural network for object detection of vehicles in thermal camera images. Our approach is unique in the way we are using a dataset containing a large number of synchronized range measurements as well as RGB and thermal images. We are using the existing YOLO toolkit to detect objects on the RGB images, we estimate detection distance by the LiDAR and later we reproject these detections into the IR image. In this way, we have created a large dataset of annotated thermal images that helped us to significantly improve the performance of the neural network at the IR domain.
Host item entry: Proceedings I of the 26st Conference STUDENT EEICT 2020: General papers, ISBN 978-80-214-5867-3

Institution: Brno University of Technology (web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library.
Original record: http://hdl.handle.net/11012/200597

Permalink: http://www.nusl.cz/ntk/nusl-447649


The record appears in these collections:
Universities and colleges > Public universities > Brno University of Technology
Conference materials > Papers
 Record created 2021-07-25, last modified 2021-08-22


No fulltext
  • Export as DC, NUŠL, RIS
  • Share