Original title:
Analýza obsahu sociálních sítí týkající se českých mobilních operátorů
Translated title:
Analysis of Social Media Content Discussing Czech Mobile Operators
Authors:
Pavlů, Jan ; Otrusina, Lubomír (referee) ; Smrž, Pavel (advisor) Document type: Bachelor's theses
Year:
2018
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[cze][eng]
Tato práce se zabývá analýzou postojů u příspěvků ze sociálních sítí týkajících se českých mobilních operátorů. Kromě analýzy postojů se zaměřuje na vizualizací stažených a analyzovaných dat. Analýza postojů je provedena za pomocí strojového učení s učitelem. Po stažení jsou příspěvky očištěny, lemmatizovány a převedeny na vektor příznaků. Pro klasifikaci se využívá Stochastic Gradient Descent. Analyzovaná data jsou zobrazena jak ve formě diagramů, tak ve tvaru seznamu příspěvků. Systém poskytuje i automatické přiřazení kategorií příspěvkům pomocí stejného principu. Při přiřazení postojů systém dosahuje úspěšnosti okolo 75%. Při přiřazení kategorií je sice vysoká přesnost (kolem 80%), ale nízká preciznost, navrátovost a F1 score(20% - 30%). Proto se automaticky neprovádí. Přínosem systému je, dokáže automaticky sbírat data z různých zdrojů, ta analyzovat a přehledně zobrazit. Také poskytuje prostředky, jak manuálně měnit přířazené hodnocení/kategori, což při občasném zásahu uživatele povede k postupnému zlepšování charakteristik systému.
The main topic of this thesis is sentiment analysis of posts obtained from a social networks. The posts are about czech mobile network operators. The essential part of implemented system is also data visualization. The sentiment analysis is done using machine learning techniques. Downloaded posts are cleaned, lemmatized and transformed to feature vectors. Stochastic Gradient Descent algorithm is used for classification. Analyzed data are visualized in charts and as the list of posts. The system provides tools for text categorization. The accuracy, precision, recall and F1 score of sentiment analysis is about 75%. The accuracy of post categorization is high (about 80%), but precision, recall and F1 score are low (about 30%). This is the reason why post categorization isn't automatically done. The benefit of the system it that it automatically collects data from different sources, analysis them and displays them. It also provides tools for manual change of sentiment/categories which can lead to better system characteristics with some help of users.
Keywords:
data minign; document classification; machinelearning; mobile network operators; sentiment; sentiment analysis; text mining; analýza postojů; analýza sentimentu; analýzatextu; aspekty; dolování dat; klasifikace dokumentů; mobilní operátor; sentiment; strojové učení
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/85201