Original title:
Genetické algoritmy a jejich využití v optimalizaci
Translated title:
Genetical algorithms and their use in optimization
Authors:
Krtek, Jiří ; Dupač, Václav (referee) ; Antoch, Jaromír (advisor) Document type: Master’s theses
Year:
2008
Language:
cze Abstract:
[cze][eng] V předložené práci se zabýváme odvětvím stochatických optimalizačních algoritmů, tzv. genetickými algoritmy. V první kapitole lze nalézt popis průběhu genetického algoritmu a hlavních operací určující směr prohledávání množiny přípustných řešení, tj. křížení a mutace. Nechybí modelový příklad, pomocí něhož čtenář všechny představené operace pochopí. Po části popisující různá vylepšení základního algoritmu, například Grayův kód, následuje nepříliš dlouhá kapitola věnovaná teorii genetických algoritmů. Ve třetí a zároveň poslední kapitole je nastolen skutečný optimalizační problém. K vyřešení tohoto problému jsme použili jednak teorii řízených Markovských řetězců pro modelování systému hromadné obsluhy, jednak genetické algoritmy k nalezení optimálního řešení. Optimální řešení jsme hledali i pomocí specializovaného algoritmu. Oba přístupy k hledání optima jsou v závěru této kapitoly zhodnoceny. Veškeré výpočty byly implementovány v jazyce Fortran.In the present work we deal with a branch of stochastic optimization algorithms, so called genetic algorithms. In the first chapter we can find description of a run of the genetic algorithm and the main operations which route searching of a feasible solution set, i.e. crossover and mutation. There is not absent a simple example, whereon reader can make sense of the presented operations. There is a short chapter devoted to theory of genetic algorithms which follows section describing various improvements of the basic algorithm, e.g. the Gray code. A real optimization problem is introduced in the third and also the last chapter. We have solved it using the theory of Markov decision processes for modeling a queuing system and by using genetic algorithms for finding optimum. We have also looked for optimum via a specialized algorithm. Both approaches are compared in the end of this chapter. All calculations have been implemented in the Fortran language.
Institution: Charles University Faculties (theses)
(web)
Document availability information: Available in the Charles University Digital Repository. Original record: http://hdl.handle.net/20.500.11956/14887