National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Study of redox and adsorption features of bile acids on hanging mercury drop electrode
Yershova, Polina ; Schwarzová, Karolina (advisor) ; Gajdár, Július (referee)
Bile acids are the end products of cholesterol metabolism and are important biological surfactants. The curved shape of their chains allows the cyclization of molecules, and the formation of a supramolecular structure. The goal of this thesis was to study the electrochemical and adsorption behavior of selected bile acids: lithocholic, deoxycholic and cholic acids. The measurements were carried out in the medium Brittonův-Robinson buffer:methanol in the ratio 9:1 using cyclic voltammetry and AC voltammetry methods and measuring the dependence of the differential capacitance Cd on the applied potential E. A hanging mercury drop electrode was used as a working electrode. The measurements showed that bile acids are adsorbed on the surface of the electrode and organizing themselves in self assembled monolayers (SAM). In our case we have observed formation of 2D condensed layers as specific form of SAM. Transfer techniques were used to demonstrate bile acid adsorption. A study of the behavior of lithocholic acid as a function of different pH values showed that only at pH 10.0 to 12.0 2D 2D condensation occurs, i. e. that at pH values in the range of 2.0 to 9.0 it is another type of adsorption. On AC voltammograms, there are a maximum of two areas in which peaks occur: the first is around -0.2 V and the...
Development of electrochemical methods for study of antibacterial compounds in small volumes
Gajdár, Július ; Barek, Jiří (advisor) ; Šiškanova, Tatiana (referee) ; Labuda, Ján (referee)
Main goal of this Ph.D. thesis is to develop voltammetric methods for the electrochemical study of novel antimycobacterial compounds hydroxynaphthalene- carboxamides. Firstly, this study was focused on the miniaturization of voltammetric methods and construction of an electrochemical microcell due to usually small volume of samples that are associated with an analysis of biologically active compounds in biological matrices. Therefore, all aspects of the voltammetric procedure were studied in a relation to miniaturization. Microcells were based on commercially available electrodes: glassy carbon electrode as a reliable electrode material with well-described characteristics and a novel silver solid amalgam electrode. This study was carried out with analytes 4-nitrophenol, pesticide difenzoquat, and 1-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide. Attention was paid especially to the optimization of oxygen removal procedures in the drop of a solution. Developed miniaturized methods had the same parameters for the determination of studied compounds as in bigger volumes. The proposed electrochemical microcell can be generally used for voltammetric analysis of those samples of biological or environmental origin that are usually available in very limited volumes. Second part of the thesis was focused...
Development of electrochemical methods for study of antibacterial compounds in small volumes
Gajdár, Július
Main goal of this Ph.D. thesis is to develop voltammetric methods for the electrochemical study of novel antimycobacterial compounds hydroxynaphthalene- carboxamides. Firstly, this study was focused on the miniaturization of voltammetric methods and construction of an electrochemical microcell due to usually small volume of samples that are associated with an analysis of biologically active compounds in biological matrices. Therefore, all aspects of the voltammetric procedure were studied in a relation to miniaturization. Microcells were based on commercially available electrodes: glassy carbon electrode as a reliable electrode material with well-described characteristics and a novel silver solid amalgam electrode. This study was carried out with analytes 4-nitrophenol, pesticide difenzoquat, and 1-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide. Attention was paid especially to the optimization of oxygen removal procedures in the drop of a solution. Developed miniaturized methods had the same parameters for the determination of studied compounds as in bigger volumes. The proposed electrochemical microcell can be generally used for voltammetric analysis of those samples of biological or environmental origin that are usually available in very limited volumes. Second part of the thesis was focused...
Study of redox and adsorption features of bile acids on hanging mercury drop electrode
Yershova, Polina ; Schwarzová, Karolina (advisor) ; Gajdár, Július (referee)
Bile acids are the end products of cholesterol metabolism and are important biological surfactants. The curved shape of their chains allows the cyclization of molecules, and the formation of a supramolecular structure. The goal of this thesis was to study the electrochemical and adsorption behavior of selected bile acids: lithocholic, deoxycholic and cholic acids. The measurements were carried out in the medium Brittonův-Robinson buffer:methanol in the ratio 9:1 using cyclic voltammetry and AC voltammetry methods and measuring the dependence of the differential capacitance Cd on the applied potential E. A hanging mercury drop electrode was used as a working electrode. The measurements showed that bile acids are adsorbed on the surface of the electrode and organizing themselves in self assembled monolayers (SAM). In our case we have observed formation of 2D condensed layers as specific form of SAM. Transfer techniques were used to demonstrate bile acid adsorption. A study of the behavior of lithocholic acid as a function of different pH values showed that only at pH 10.0 to 12.0 2D 2D condensation occurs, i. e. that at pH values in the range of 2.0 to 9.0 it is another type of adsorption. On AC voltammograms, there are a maximum of two areas in which peaks occur: the first is around -0.2 V and the...
Development of electrochemical methods for study of antibacterial compounds in small volumes
Gajdár, Július
Main goal of this Ph.D. thesis is to develop voltammetric methods for the electrochemical study of novel antimycobacterial compounds hydroxynaphthalene- carboxamides. Firstly, this study was focused on the miniaturization of voltammetric methods and construction of an electrochemical microcell due to usually small volume of samples that are associated with an analysis of biologically active compounds in biological matrices. Therefore, all aspects of the voltammetric procedure were studied in a relation to miniaturization. Microcells were based on commercially available electrodes: glassy carbon electrode as a reliable electrode material with well-described characteristics and a novel silver solid amalgam electrode. This study was carried out with analytes 4-nitrophenol, pesticide difenzoquat, and 1-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide. Attention was paid especially to the optimization of oxygen removal procedures in the drop of a solution. Developed miniaturized methods had the same parameters for the determination of studied compounds as in bigger volumes. The proposed electrochemical microcell can be generally used for voltammetric analysis of those samples of biological or environmental origin that are usually available in very limited volumes. Second part of the thesis was focused...
Development of electrochemical methods for study of antibacterial compounds in small volumes
Gajdár, Július ; Barek, Jiří (advisor) ; Šiškanova, Tatiana (referee) ; Labuda, Ján (referee)
Main goal of this Ph.D. thesis is to develop voltammetric methods for the electrochemical study of novel antimycobacterial compounds hydroxynaphthalene- carboxamides. Firstly, this study was focused on the miniaturization of voltammetric methods and construction of an electrochemical microcell due to usually small volume of samples that are associated with an analysis of biologically active compounds in biological matrices. Therefore, all aspects of the voltammetric procedure were studied in a relation to miniaturization. Microcells were based on commercially available electrodes: glassy carbon electrode as a reliable electrode material with well-described characteristics and a novel silver solid amalgam electrode. This study was carried out with analytes 4-nitrophenol, pesticide difenzoquat, and 1-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide. Attention was paid especially to the optimization of oxygen removal procedures in the drop of a solution. Developed miniaturized methods had the same parameters for the determination of studied compounds as in bigger volumes. The proposed electrochemical microcell can be generally used for voltammetric analysis of those samples of biological or environmental origin that are usually available in very limited volumes. Second part of the thesis was focused...
Voltammetric determination of 1-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide by voltammetry at a glassy carbon electrode in microvolumes of dimethyl sulfoxide
Gajdar, J. ; Goněc, T. ; Jampílek, J. ; Brázdová, Marie ; Bábková, Zuzana ; Fojta, Miroslav ; Barek, J. ; Fischer, J.
Voltammetric reduction and oxidation of 1-hydroxy-N-(4-nitrophenyl) naphthalene-2-carboxamide was investigated at glassy carbon electrode in dimethyl sulfoxide. Cyclic voltammetry was used to investigate the mechanism of reduction of nitro group and oxidation of hydroxyl group. The analyte was successfully determined in dimethyl sulfoxide by differential pulse voltammetry and the whole voltammetric procedure was miniaturised. Square wave voltammetry was employed to reduce the interference from dissolved oxygen. Determination in one drop (20 mu L) of 0.1 mol L-1 tetrabutyl-ammonium tetrafluoroborate in dimethyl sulfoxide provided very similar results compared to determination in the bulk solution. Limits of quantification were 5.0 mu mol L-1 for cathodic voltammetry and 5.3 mu mol L-1 for anodic voltammetry.
Voltammetry of 1-Hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide at a Glassy Carbon Electrode
Gajdar, J. ; Goněc, T. ; Jampílek, J. ; Brázdová, Marie ; Bábková, Zuzana ; Fojta, Miroslav ; Barek, J. ; Fischer, J.
This electrochemical study is aimed at an investigation of a reaction mechanism and determination of 1-hydroxy-N-(4-nitrophenyl)naphthalene-2-carboxamide in media with various amount of an organic solvent (dimethyl sulfoxide or methanol). The studied analyte is a model substance from a group of recently prepared drugs with antibiotic characteriss Mechanism of reducible nitro group and oxidisable hydroxyl group is compared with studies of substructures and structurally similar compounds. Preliminary comparison of different media was carried out to find the best parameters for the determination.
Voltammetric Techniques for Analysis in a Single Drop of a Solution
Gajdar, J. ; Goněc, T. ; Jampílek, J. ; Brázdová, Marie ; Bábková, Zuzana ; Fojta, Miroslav ; Barek, J. ; Fischer, J.
This contribution describes miniaturization of voltammetric methods and some of the main problems caused by reducing the sample volume to 20 mu L. This study was carried out in dimethyl sulfoxide solutions and buffered aqueous solutions with 10% DMSO at a glassy carbon electrode. A novel antibiotic agent, 1-hydroxy-N-(4-nitrophenyl) naphthalene-2-carboxamide, was used as a model substance. This analyte was determined by cathodic and anodic voltammetry. Elimination of the negative influence of dissolved oxygen was performed in various manners. Two most effective methods were square wave voltammetry that can be used in the presence of dissolved oxygen and removal of oxygen in a microcell with nitrogen atmosphere inside.
Determination of a Novel Antimycobacterial Agent in a Single Drop of a Solution by Voltammetry at a Glassy Carbon Electrode
Gajdar, J. ; Goněc, T. ; Jampílek, J. ; Brázdová, Marie ; Bábková, Zuzana ; Fojta, Miroslav ; Barek, J. ; Fischer, J.
One of the novel antimycobacterial agents from the group of hydroxynaphthalene carboxamides (namely I-hydroxy-X-(4-nitrophenyl)naphthalene-2-carboxamide) was investigated using voltammetric methods for the first time. The study was carried out at a glassy carbon electrode by methods of cathodic and anodic differential pulse voltammetry in micro volumns (20 mu L) of an aqueous solution at pH 7 containing 10% dimethyl sulfoxide and in a real matrix of a bacterial growth medium. The miniaturized method was compared with the macro volume determination. The presence of oxygen in micro volumes presents the biggest obstacle for the miniaturized method.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
See also: similar author names
6 Gajdár, Július
Interested in being notified about new results for this query?
Subscribe to the RSS feed.