National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Double strand DNA breaks response in Huntington´s disease transgenic minipigs
Vaškovičová, Michaela ; Šmatlíková, Petra ; Herbert, A. ; Motlík, Jan ; Šolc, Petr
Huntington’s disease (HD) is progressive neurodegenerative disorder caused by presence of CAG expansion in the huntingtin gene, which gives rise to mutated form of huntingtin protein (mHtt). There is a strong evidence that DNA damage response is compromised by presence of mHtt in cells and increase of double strand DNA breaks (DSBs) is an early event in HD pathology. It was shown, that level of γH2AX is significantly higher in R6/2 mice compared to wild-type animals. Moreover, level of γH2AX is higher also in striatal neurons and fibroblasts of human HD patients. Furthermore, protein p53, key player in DNA damage response, is hyperactivated in cells expressing mHtt and inhibition of p53 or ATM ameliorates phenotypes of HD animal models. However, exact mechanism of mHtt action is not clear and therefore further investigation of mHtt effects on DSBs response is very important for the understanding of HD pathology.
Mitochondrial phenotype in minipig model transgenic for N-terminal part of human mutated huntingtin
Hansíková, H. ; Rodinová, M. ; Křížová, J. ; Dosoudilová, Z. ; Štufková, H. ; Bohuslavová, Božena ; Klíma, Jiří ; Juhás, Štefan ; Ellederová, Zdeňka ; Motlík, Jan ; Zeman, J.
Huntington’s disease (HD) is neurodegenerative disorder caused by an abnormal expansion of CAG repeat encoding a polyglutamine tract of huntingtin (htt). It has been postulated that mitochondria dysfunction may play significant role in the pathophysiology of the HD. But it is still not known yet in detail how mitochondria are able to cover energy needs of the cells during the progression of the HD.
Evaluation of strategies for humanization of the entire porcine HTT locus
Vochozková, Petra ; Klymiuk, N. ; Wolf, E. ; Ellederová, Zdeňka ; Motlík, Jan
Because fully suitable large animal models are still lacking for Huntington´s disease, we would like to generate a new minipig model which will have an entirely humanized HTT locus. Given the large size of the HTT gene (approx. 160 kb) we will test two different approaches to humanize the porcine HTT locus in porcine kidney cells (PKCs).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.