Název:
Plochy s konstantní Gaussovou křivostí
Překlad názvu:
Surfaces with constant Gauss curvature
Autoři:
Zemanová, Silvie ; Kureš, Miroslav (oponent) ; Doupovec, Miroslav (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2022
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstrakt: [cze][eng]
Tato bakalářská práce se zabývá popisem ploch s konstantní Gaussovou křivostí a jejím hlavním cílem je provést klasifikaci těchto ploch. První část je věnována klasifikaci rotačních ploch s konstantní Gaussovou křivostí. Následuje popis vybraných ploch s nulovou Gaussovou křivostí, na kterých je ukázáno, že u nich lze dospět ke stejnému tvaru první základní formy. Další část se věnuje klasifikaci všech ploch s nulovou Gaussovou křivostí. Práce je doplněna obrázky vybraných ploch pro lepší představu a snazší porozumění textu.
This bachelor thesis deals with description of surfaces with constant Gaussian curvature and its main goal is to classify these surfaces. The first part is devoted to the classification of surfaces of revolution with constant Gaussian curvature. The next part consists of description of selected surfaces with zero Gaussian curvature, on which is shown that the same shape of the first fundamental form can be achieved. The last part deals with the classification of all surfaces with zero Gaussian curvature. For easier understanding of the text, the thesis includes images of selected surfaces.
Klíčová slova:
Gaussova křivost; Plochy; Pseudosféra; Přímkové plochy; Rotační plochy; Traktrix; Gaussian curvature; Pseudosphere; Ruled surfaces; Surfaces; Surfaces of revolution; Tractrix
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/205370