Název:
Klasifikace pohybových abnormalit pomocí genetického programování
Překlad názvu:
Movement Abnormalities Classification using Genetic Programming
Autoři:
Chudárek, Aleš ; Mrázek, Vojtěch (oponent) ; Drahošová, Michaela (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2021
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Při potlačování příznaků Parkinsonovy nemoci je pro pacienta velice důležité správné dávkovaní léků. Nesprávné dávkování může zapříčinit buďto nedostatečné potlačení příznaků nebo naopak při vysokých dávkách dochází k vedlejším účinkům, například dyskinezii. Ta se projevuje nedobrovolným pohybem svalů. Tato práce se zabývá problematikou automatizované klasifikace dyskinezie z pohybových dat nasnímaných pomocí tříosého akcelerometru umístěného na těle pacienta. V této práci je klasifikátor dyskinezie automatizovaně navrhován pomocí Kartézského genetického programování. Navržený klasifikátor dosahuje velmi dobré kvality při klasifikaci závažné míry dyskinezie (AUC = 0,94), což je srovnatelný výsledek jako u technik prezentovaných v odborné literatuře.
When suppressing the symptoms of Parkinson's disease, the correct dosage of drugs is critical for the patient. Improper dosing can either cause insufficient suppression of symptoms or, conversely, side effects, such as dyskinesia, occur with high doses. Dyskinesia is manifested by involuntary muscle movement. This work deals with the automated classification of dyskinesia from motion data recorded using a triaxial accelerometer located on the patient's body. In this work, the classifier of dyskinesia is automatically designed using Cartesian genetic programming. The designed classifier achieves very good quality of classification of severe dyskinesia (AUC = 0,94), which is a comparable result to the techniques presented in scientific literature.
Klíčová slova:
dyskinezie; evoluce.; evoluční algoritmus; kartézské genetické programování; klasifikátor; Parkinsonova nemoc; Strojové učení; cartesian genetic programming; classifier; dyskinesia; evolution.; evolutionary algorithm; Machine learning; Parkinson's disease
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/199367