Název:
Lieovy grupy a jejich fyzikální aplikace
Překlad názvu:
Lie groups and their physical applications
Autoři:
Kunz, Daniel ; Kureš, Miroslav (oponent) ; Tomáš, Jiří (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2020
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstrakt: [cze][eng]
Diplomová práce objasňuje pojmy Lieova grupa a Lieova algebra a jejich aplikace na fyzikálních problémech. Abychom mohli vykonstruovat Lieovy grupy a algebry je zapotřebí definovat pár základních pojmů jako je topologická varieta, tenzorový počet a diferenciální geometrie. Tomuto je věnovaná první část mé práce. V druhé části se zabývám konstrukcí Lieových grup a algeber. Následně ukazuji různé vlastnosti jednotlivých struktur a pak se zabývám tím, zda existuje provázaní mezi Lieovými grupami a Lieovými algebrami. V poslední části se jedná čistě o aplikace vykonstruované teorie na fyzikální problémy. Jako je hledání symetrií ve fyzice, které dle teorému Noetherové je spjat se zákony zachování.
In this thesis I describe construction of Lie group and Lie algebra and its following usage for physical problems. To be able to construct Lie groups and Lie algebras we need define basic terms such as topological manifold, tensor algebra and differential geometry. First part of my thesis is aimed on this topic. In second part I am dealing with construction of Lie groups and algebras. Furthermore, I am showing different properties of given structures. Next I am trying to show, that there exists some connection among Lie groups and Lie algebras. In last part of this thesis is used just for showing how this apparat can be used on physical problems. Best known usage is to find physical symmetries to establish conservation laws, all thanks to famous Noether theorem.
Klíčová slova:
diferenciální geometrie; Diracova symbolika; Lieova algebra; Lieova závorka; Lieovy grupy; Poissonova závorka; topologie; variační počet; varieta; calculus of variations; differential geometry; Dirac symbolic; Lie algebras; Lie bracket; Lie groups; manifold; Poisson bracket; topology
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/192317