Název:
Hodnocení hybnosti mluvidel na základě akustické analýzy řeči
Překlad názvu:
Assessing movement of articulatory organs based on acoustic analysis of speech
Autoři:
Novotný, Kryštof ; Galáž, Zoltán (oponent) ; Mekyska, Jiří (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2021
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstrakt: [cze][eng]
Hypokinetická dysartrie je motorická porucha řeči, často přítomná při průběhu Parkinsonovi nemoci. Postihuje řečové ústrojí včetně artikulačních schopností. Existuje více řečových parametrů popisujících tuto oblast, proto se nabízí zabývat se jejich vzájemným srovnáním. Práce si klade za cíl navrhnout a popsat algoritmus pro výpočet parametrů artikulace, přizpůsobený českému jazyku, a následně porovnat jejich diskriminační sílu. Akustickou analýzu řeči v algoritmu zajišťuje program Praat a pro následné zpracování dat jsou použity základní algoritmy strojového učení jako Expectation-Maximization, Kmeans nebo lineární regrese. Pro vyhodnocení slouží Mann-Whitneyho U test a zástupci lineárních, nelineárních i souhrnných metod strojového učení s využitím křížové validace a vyvážené přesnosti. Výsledkem jsou skripty pro automatické nalezení hran Hellwagova vokalického trojúhelníku, pro výpočet artikulačních parametrů a pro jejich vyhodnocení. Výstupy analýzy dvou různých databází (PARCZ a CoBeN) dokazují, že mezi běžnou a dysartrickou řečí lze skutečně pozorovat rozdíly v artikulaci. Na základě vzájemného srovnávání výsledků je proto v práci navrženo, kterými parametry a modely strojového učení je vhodné se dále v souvislosti s touto problematikou zabývat.
Hypokinetic dysarthria is a motor speech disorder often present during Parkinson’s disease. It affects the speech system, including articulatory abilities. There are several speech parameters describing this domain, so it is suggested to deal with their mutual comparison. This work aims to design and describe an algorithm for calculating the parameters of articulation, adapted for the Czech language, and then compare their discriminative power. The acoustic analysis of speech included in it is done via the Praat program and basic machine learning algorithms such as Expectation-Maximization, Kmeans and linear regression are used for the subsequent data processing. The Mann-Whitney U test and representatives of linear, nonlinear and ensemble machine learning models using cross-validation and balanced accuracy are used for evaluation. The results are scripts for automatic assessment of vowel space area, for calculating articulation parameters and for their evaluation. The outputs of the analysis of two different databases (PARCZ and CoBeN) prove that differences in articulation can indeed be observed between normal and dysarthric speech. Based on the mutual comparison of results, it is therefore proposed in the work which parameters and models of machine learning are being appropriate for further dealing with this issue.
Klíčová slova:
akustická analýza; artikulace; formantové kmitočty; Hypokinetická dysartrie; parametrizace řeči; Parkinsonova nemoc; strojové učení; zpracování řečových signálů; acoustic analysis; articulation; formant frequencies; Hypokinetic dysarthria; machine learning; Parkinson’s disease; speech parametrization; speech signal processing
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/198104