Název:
Strukturní identifikace protein-DNA interakcí pomocí strojového učení
Překlad názvu:
Structural identification of protein-DNA interactions using machine learning
Autoři:
Gajdošová, Petra ; Hoksza, David (vedoucí práce) ; Feidakis, Christos (oponent) Typ dokumentu: Bakalářské práce
Rok:
2020
Jazyk:
eng
Abstrakt: [eng][cze] DNA-protein interactions are essential parts of cell life and cell cycle. Prediction of these interactions requires knowledge of DNA and a protein structure. Because machine learning approaches show adequate results in biological predictions, we chose to use it for the prediction of protein-DNA interactions. In this thesis, we use the machine learning tool P2Rank that was originally designed for prediction of ligand-binding sites and adapt it to predict DNA-binding sites. Apart of that, the thesis serves as a summary of existing prediction tools/methods and includes suggestions for further modifications of P2Rank.Interakcie DNA a proteínov sú dôležitou súčasťou bunky a bunečného cyklu. Aby sme mohli predikovať ich interakcie mali by sme poznať štruktúru DNA a proteínov. Pre predikciu interakcií sme zvolili strojové učenie, ktoré má adekvátne výsledky v oblasti biologickej predikcie. V tejto práci používame a upravujeme P2Rank pre predikciu DNA väzobných miest na povrchu proteínu. P2rank bol pôvodne navrhnutý pre predikciu väzobných miest ligandov. Rovnako sme pripravili popis existujúcich metód pre predikciu DNA väzobných miest. Návrhy nových vlastností pre predikciu väzobných miest je súčasťou popisu P2Rank.
Klíčová slova:
bioinformatika; strojové učení; strukturní bioinoformatika; bioinformatics; machine learning; structural bioinformatics