Název:
Doporučování filmů na základě uživatelských profilů ČSFD
Překlad názvu:
Film Suggestions Based on CSFD User Profiles
Autoři:
Janko, Pavel ; Šůstek, Martin (oponent) ; Uhlíř, Václav (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2019
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Tato práce se zabývá problematikou využití neuronových sítí pro doporučování filmů. Je zde obecně popsán princip využití neuronových sítí u strojového učení a rovněž jsou zde shrnuty základní i pokročilé techniky pro tvorbu doporučovacích systémů. Jádrem práce je návrh, implementace a zhodnocení systému, jehož cílem je doporučování filmů na základě dat vydolovaných z uživatelských profilů ČSFD (Česko-Slovenské filmové databáze). Pro splnění tohoto účelu systém využívá explicitní faktorizační model založený na kolaborativním filtrování mezi položkami k co nejpřesnějšímu odhadu hodnocení, které by uživatel filmu po jeho shlédnutí udělil. Práce dále řeší souvislost obsáhlosti datové sady a přesnosti doporučení a demonstruje tuto přesnost analýzou zpětné vazby uživatelů.
This thesis covers the topic of utilizing neural nets for recommending movies. The principle of using neural nets with machine learning and both the general and the advanced techniques of creating a recommender system are also covered in the thesis. The core of the thesis is the design, implementation and finally the evaluation of a system for movie recommendations based upon the data mined from the user profiles from the ČSFD (Czech-Slovak film database). In order to accomplish this goal the system utilizies an explicit factorization model based on collaborative filtering between items to predict an accurate rating that the user would presumably give to a movie after watching it. This thesis also describes the relation between dataset size and prediction accuracy and demonstrates this accuracy by analyzing user feedback.
Klíčová slova:
dolování dat; doporučovací systémy; doporučování filmů; faktorizace matic; filmy; kolaborativní filtrování; latentní faktorové modely; neuronové sítě; spotlight; ČSFD; collaborative filtering; CSFD; data mining; latent factor models; matrix factorization; movie recommendations; movies; neural networks; recommender systems; spotlight
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/194914