Název:
Předpověď volatility akcií s pomocí Google trends
Překlad názvu:
Predicting Stock Market Volatility with Google Trends
Autoři:
Pecháček, Jan ; Krištoufek, Ladislav (vedoucí práce) ; Janotík, Tomáš (oponent) Typ dokumentu: Bakalářské práce
Rok:
2016
Jazyk:
eng
Abstrakt: [eng][cze] This thesis aims to investigate the usability of Google Trends data for predicting stock market volatility. Using daily Google data on tickers of three companies with large market capitalization, we examine the causal relationship between Google data and volatility proxy. We employ two common models for volatility, Generalised Autoregressive Conditional Heteroskedasticity model (GARCH) and Heterogeneous Autoregressive model (HAR) and we augment them by adding Google data. We studied the performance of in-sample forecasting and out-sample forecasting. Our results show that Google data Granger-cause stock market volatility and is able to produce more accurate results in in-sample forecasts then models without Google data added.Tato práce se zaměřuje na užitečnost Google Trends dat pro předpověď volatility akcií. S využitím denních dat získanách přímo od pražské Google kanceláře nejprve zkoumáme kauzalitu mezi aproximovanou volatilitou a Google daty tří amerických společností s vysokou kapitalizací. Poté odhadujeme modely GARCH a Heterogenní autoregrese (HAR) a obohatíme je o Google data. Zkoumáme in-sample a out-sample předpovědi a porovnáváme přesnost neobohacených a obohacených modelů. Naše výsledky ukazují, že Google data Granger způsobují volatilitu akcií, a tedy jsou vhodná pro předpověď pohybu akciových trhů. Obohacené modely ukazují přesnější in-sample předpověď a snižují persistenci volatility.
Klíčová slova:
finanční trhy; Google trends; volatilita; financial markets; google trends; volatility