National Repository of Grey Literature 109 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Assessment of Parkinson’s Disease Based on Acoustic Analysis of Hypokinetic Dysarthria
Galáž, Zoltán ; Brezany, Peter (referee) ; Sklenář, Jaroslav (referee) ; Mekyska, Jiří (advisor)
Hypokinetická dysartrie (HD) je častým symptomem vyskytujícím se až u 90% pacientů trpících idiopatickou Parkinsonovou nemocí (PN), která výrazně přispívá k nepřirozenosti a nesrozumitelnosti řeči těchto pacientů. Hlavním cílem této disertační práce je prozkoumat možnosti použití kvantitativní paraklinické analýzy HD, s použitím parametrizace řeči, statistického zpracování a strojového učení, za účelem diagnózy a objektivního hodnocení PN. Tato práce dokazuje, že počítačová akustická analýza je schopná dostatečně popsat HD, speciálně tzv. dysprozodii, která se projevuje nedokonalou intonací a nepřirozeným tempem řeči. Navíc také dokazuje, že použití klinicky interpretovatelných akustických parametrů kvantifikujících různé aspekty HD, jako jsou fonace, artikulace a prozodie, může být použito k objektivnímu posouzení závažnosti motorických a nemotorických symptomů vyskytujících se u pacientů s PN. Dále tato práce prezentuje výzkum společných patofyziologických mechanizmů stojících za HD a zárazy v chůzi při PN. Nakonec tato práce dokazuje, že akustická analýza HD může být použita pro odhad progrese zárazů v chůzi v horizontu dvou let.
Research of modern articulation features for the analysis of hypokinetic dysarthria
Vrba, Filip ; Zvončák, Vojtěch (referee) ; Galáž, Zoltán (advisor)
This thesis deals with hypokinetic dysarthria, as a disorder of motor speech, which occurs in approximately 70% of patients with Parkinson’s disease (PD). Two newly designed speech parameters for quantification of articulation within HD are analysed in this thesis. This parameters were validated on recording of both healthy and PD speakers. The theoretical part describes conventional and used methods of speech signal processing, parameterization and statistical analysis. In the part of the system implementation is described practical design of new parameters and also methods of their statistical evaluation by correlation analysis and machine learning. The aim of this work is to design new speech parameters for HD diagnostics. The proposed system was implemented in MATLAB software environment.
Development of modern acoustic features quantifying hypokinetic dysarthria
Kowolowski, Alexander ; Zvončák, Vojtěch (referee) ; Galáž, Zoltán (advisor)
This work deals with designing and testing of new acoustic features for analysis of dysprosodic speech occurring in hypokinetic dysarthria patients. 41 new features for dysprosody quantification (describing melody, loudness, rhythm and pace) are presented and tested in this work. New features can be divided into 7 groups. Inside the groups, features vary by the used statistical values. First four groups are based on absolute differences and cumulative sums of fundamental frequency and short-time energy of the signal. Fifth group contains features based on multiples of this fundamental frequency and short-time energy combined into one global intonation feature. Sixth group contains global time features, which are made of divisions between conventional rhythm and pace features. Last group contains global features for quantification of whole dysprosody, made of divisions between global intonation and global time features. All features were tested on Czech Parkinsonian speech database PARCZ. First, kernel density estimation was made and plotted for all features. Then correlation analysis with medicinal metadata was made, first for all the features, then for global features only. Next classification and regression analysis were made, using classification and regression trees algorithm (CART). This analysis was first made for all the features separately, then for all the data at once and eventually a sequential floating feature selection was made, to find out the best fitting combination of features for the current matter. Even though none of the features emerged as a universal best, there were a few features, that were appearing as one of the best repeatedly and also there was a trend that there was a bigger drop between the best and the second best feature, marking it as a much better feature for the given matter, than the rest of the tested. Results are included in the conclusion together with the discussion.
Analysis of Speech Signals for the Purpose of Neurological Disorders IT Diagnosis
Mekyska, Jiří ; Dostál, Otto (referee) ; Přibilová, Anna (referee) ; Smékal, Zdeněk (advisor)
This work deals with a design of hypokinetic dysarthria analysis system. Hypokinetic dysarthria is a speech motor dysfunction that is present in approx. 90 % of patients with Parkinson’s disease. The work is mainly focused on parameterization techniques that can be used to diagnose or monitor this disease as well as estimate its progress. Next, features that significantly correlate with subjective tests are found. These features can be used to estimate scores of different scales like Unified Parkinson’s Disease Rating Scale (UPDRS) or Mini–Mental State Examination (MMSE). A protocol of dysarthric speech acquisition is introduced in this work too. In combination with acoustic analysis it can be used to estimate a grade of hypokinetic dysarthria in fields of faciokinesis, phonorespiration and phonetics (correlation with 3F test). Regarding the parameterization, features based on modulation spectrum, inferior colliculus coefficients, bicepstrum, approximate and sample entropy, empirical mode decomposition and singular points are originally introduced in this work. All the designed techniques are integrated into the system concept in way that it can be implemented in a hospital and used for a research on Parkinson’s disease or its evaluation.
Speech analysis using iOS or Android system
Hejda, Jakub ; Galáž, Zoltán (referee) ; Mekyska, Jiří (advisor)
The telemendicine is rapidly growing industrial branch and gives an opportunity of easier diagnosis needed for much more effective treating methods development. The aim is to develop a smartphone application for the diagnosis of prolonged phonation of pati- ents with Parkinson’s disease. Qt has been chosen s the main framework, allowing the multiplatform development using various combination of languages consisting of C++, QML, Java and JavaScript. Required functionality has been completely implemented. The application guides a user through the process of recording, then executes the analy- sis, saves data into database and displays the history into well-arranged charts, the user can also set a notification to remind him of a recording. The application can be compiled for all widely used mobile and desktop systems.
Tremometer
Mičánková, Veronika ; Harabiš, Vratislav (referee) ; Chmelař, Milan (advisor)
Bachelor’s thesis analyzes tremor as a movement disorder and shows its relations to diseases such as Parkinson’s disease, which is therefore described more in detail. The other part of the work consists of a brief analysis on the physical sensors of vibrations and other methods that can be used to detect vibrations. Practical part is divided into two. First one describes a design of a tremometer and its constructing and the other one describes realization of a program for evaluation of tremor.
Use of Statistical Methods for Progression Evaluation of Parkinson’s Disease
Pecha, Jiří ; Mekyska, Jiří (referee) ; Smékal, Zdeněk (advisor)
This master’s thesis takes aim with the use of statistical methods for progression evaluation of Parkinson’s disease. There is a brief description of Parkinson’s disease. It is further stated processing and evaluation of values of speech parameters which are affected by Parkinson’s disease. The thesis describes the process using the values of classification and regression trees and evaluate results using the mean absolute error and estimated error. Processing and evaluation of values was done in MATLAB software.
Differential analysis of multilingual corpus in patients with neurodegenerative diseases
Kováč, Daniel ; Zvončák, Vojtěch (referee) ; Mekyska, Jiří (advisor)
This diploma thesis focuses on the automated diagnosis of hypokinetic dysarthria in the multilingual speech corpus, which is a motor speech disorder that occurs in patients with neurodegenerative diseases such as Parkinson’s disease. The automatic speech recognition approach to diagnosis is based on the acoustic analysis of speech and subsequent use of mathematical models. The popularity of this method is on the rise due to its objectivity and the possibility of working simultaneously on different languages. The aim of this work is to find out which acoustic parameters have high discriminative power and are universal for multiple languages. To achieve this, a statistical analysis of parameterized speech tasks and subsequent modelling by machine learning methods was used. The analyses were performed for Czech, American English, Hungarian and all languages together. It was found that only some parameters enable the diagnosis of the hypokinetic disorder and are, at the same time, universal for multiple languages. The relF2SD parameter shows the best results, followed by the NST parameter. When classifying speakers of all the languages together, the model achieves accuracy of 59 % and sensitivity of 72 %.
Acoustic call analysis application for Android system
Hejda, Jakub ; Mucha, Ján (referee) ; Mekyska, Jiří (advisor)
The telemedicine’s capabilities are rapidly expanding due to technological advances in a smarphone development. The goal of this thesis was to suggest the architecture and prepare the design providing acquisition, processing and synchronization of voice para- meters recorded by patients with Parkinson’s disease and to implement such system. The architecture was completed successfully, it consists of the mobile application able to record patient’s calls, the server application introducing an interface to store and synchronize the data and to provide them to the web application, where doctors can see the data and analyze it. Implementation of the server application was finished according to the design and to the requirements for robustness and security as well as the web application. By an extension of the existing mobile application for recording voice calls there was developed a huge system for the analysis of this disease.
Acoustic analysis of sentences complicated for articulation in patients with Parkinson's disease
Kiska, Tomáš ; Smékal, Zdeněk (referee) ; Mekyska, Jiří (advisor)
This work deals with a design of hypokinetic dysarthria analysis system. Hypokinetic dysarthria is a speech motor dysfunction that is present in approx. 90 % of patients with Parkinson’s disease. Next there is described Parkinson's disease and change of the speech signal by this disability. The following describes the symptoms, which are used for the diagnosis of Parkinson's disease (FCR, VSA, VAI, etc.). The work is mainly focused on parameterization techniques that can be used to diagnose or monitor this disease as well as estimate its progress. A protocol of dysarthric speech acquisition is described in this work too. In combination with acoustic analysis it can be used to estimate a grade of hypokinetic dysarthria in fields of faciokinesis, phonorespiration and phonetics (correlation with 3F test). Regarding the parameterization, new features based on method RASTA. The analysis is based on parametrization sentences complicated for articulation. Experimental dataset consists of 101 PD patients with different disease progress and 53 healthy controls. For classification with feature selection have selected method mRMR.

National Repository of Grey Literature : 109 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.