National Repository of Grey Literature 51 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Hydrogels modified by amphiphilic structures
Heger, Richard ; Sedlařík, Vladimír (referee) ; Kráčalík, Milan (referee) ; Pekař, Miloslav (advisor)
The submitted dissertation deals with the influence of amphiphilic structures on hydrogel properties. Additions of various amphiphilic substances associated with the formation of highly ordered structures affect the mechanical, transport and structural properties of hydrogels. The main inspiration for this type of work was living tissue, more precisely the extracellular matrix, which is often mimicked by hydrocolloids, and its high orderliness is responsible for its unique properties. The knowledge obtained from this tissue was applied to the hydrogel systems studied in this work. Various cross-linked hydrogel matrices (physically cross-linked agarose and gelatin, ionically cross-linked alginate and chemically cross-linked mixture of polyvinyl alcohol and chitosan) were suitable representatives for this work. These hydrogel systems were modified by the addition of various amphiphilic substances. The human body’s own phospholipid, lecithin, or variously charged more classic surfactants (CTAB, SDS and Triton X-100). Experimentally, this work is divided into three areas, the study of mechanical properties using rheology, the description of transport properties via release and flow experiments using various model drugs (rhodamine 6G, eosin B, amido black 10B, methylene blue and riboflavin), and morphological characterization using SEM. The characterization of hydrogel systems was supported by other techniques used in this work, such as drying and swelling experiments or gas sorption.
Numerical analysis of visco-elastic material models
Michálková, Veronika ; Lang, Rostislav (referee) ; Trcala, Miroslav (advisor)
The serviceability of concrete structures is a multiphysical problem where viscoelasticity is interrelated with plasticity or damage, among other things. This work focuses on the analysis and testing of an isotropic viscoelastic material model based on a generalized Kelvin chain. The Kelvin chain is described in detail for 1D strain and then its application to multi-axial 2D plane strain is shown. In this paper, a total of 3 studies are carried out using the Kelvin chain. The first study concerns the analysis of the Kelvin chain with damage on several benchmark refinement problems. The second study compares the results of the Kelvin chain including damage with an experiment on a three-point beam bending problem. The third study concerns the analysis of the Kelvin chain with damage on a stress relaxation problem in a loaded concrete beam and compares the results with the ANSYS calculation and experimental measurements. The aim is to analyze the effect of the parameter on the time-dependent behavior of the concrete and also the effect of the number of time increments N on the result.
Utilization of interfacial rheology to study of biological systems
Kachlířová, Helena ; Kalina, Michal (referee) ; Smilek, Jiří (advisor)
The aim of this bachalor thesis is to implement and optimization a relatively new method of interfacial rheology. The optimization of this method was realized on two types of interfaces, specifically liquid-liquid using immiscible systems water-chloroform and water-toluene, and water-air. The applicability of this method was tested by using real samples in form of surfactant septonex and biological system represented by protein (bovine serum albumin). The interfacial layers formed by septonex were purely viscous, where the rigidity of the layer increased slightly with concentration until reaching critical micellar concentration and then the rigidity decreased. In comparison with septonex, the interfacial film made of bovine serum albumin showed predominantly elastic behaviour.
Passive microrheology of colloidal systems based on biopolymers.
Bjalončíková, Petra ; Burgert, Ladislav (referee) ; Mravec, Filip (advisor)
Diploma thesis was aimed to deal with evaluation of microrheology method in the research of biopolymer-protein. Used biopolymer was sodium hyaluronate and proteins were trypsin and chymotrypsin. For measuring of microrheology were used particles with different radius (0,5 m and 1 m). It was found, that both substances have viscous charakter. Passive microrheology is suitable for measuring the viscoelastic properties of biopolymers.
Experimentální určení tlumení nosníku
Fučík, Ondřej ; Hadraba, Petr (referee) ; Rubeš, Ondřej (advisor)
This bachelor thesis deals with structural damping of metallic materials. The first part is research of damping properties, ways how to discover damping properties and short description of how to simulate viscoelasticity of materials, using mathematical models. The second part is focused on an experiment with beams of different lengths and materials. Mathematical models making is also part of solution. The third, last part is focused on results processing. Using mathematical models, damping ratios of beams are determined.
Identification of multiparameter rheological models of high viscosity silicone fluids
Števček, Juraj ; Kaplan, Zdeněk (referee) ; Píštěk, Václav (advisor)
This bachelor thesis deals with silicone torsional vibration dampers, which are used in the automotive industry. It focuses on the design of a suitable mathematical model that describes the silicone fluid in the silicone damper under alternating stress. Several models are tested, their parameters are determined using optimization algorithms and the most suitable one is selected.
Kinetics Studies of Collagen I Self-Assembly
Voldánová, Michaela ; Ondreáš, František (referee) ; Jančář, Josef (advisor)
Collagen, the most abundant protein of connective tissues, in various forms has a wide applications due to their diverse biological and chemical properties. One of the forms are collagen hydrogels, which are considered very suitable material for applications in tissue engineering, because they are able to provide biodegradable scaffolds that its properties correspond with living tissues. These systems are used for example as scaffold for targeted drug delivery with controlled release, in combination with cells can be used for the regeneration and reconstruction of tissues and organs. Heating the aqueous solution of collagen leads to spontaneous self-assembly process to variously distributed fibrillar structures, which are at a later stage of fibrillogenesis prerequisite for creating a three-dimensional supporting network, which is the basic building block of the gel. The resulting properties of the hydrogel depend not only on its structure, but also on the conditions which cause self-assembly process. Hydrogels were performed at 37 ° C and physiological pH. Studied structural variable was the concentration of collagen. So far, for the research of self-assembly were used spectrometric methods, which only provide information about kinetics of morphogenesis. In this work to study the kinetics of collagen I self-assembly were used rheological methods, which additionally give information about viscoelastic properties of the resulting material. The obtained experimental data confirmed two-step process of collagen I fibrillogenesis consisting of nucleation and growth process. Rheological hydrogels collagen behaved as a nonlinear yield-pseudoplastic. An attempt was made to molecular interpretation of the results. Using two-parametric Avrami equation was determined the rate of self-assembly for each concentration of collagen and the value of Avrami exponent determining the shape of produced units. The prepared hydrogels were subjected to increasing shear stresses (strain amplitude, shear rate). Larger amplitudes leads to collapse of the hydrogel structure, which is able to again partially regenerated.
Static Analysis of Parts of Thermoplastic Pipe Systems
Plášek, Jan ; Kuklík,, Pavel (referee) ; prof. Ing. Alois Materna, CSc., MBA (referee) ; Kytýr, Jiří (advisor)
Thermoplastic materials have significant nonlinear behaviour. The nonlinear behaviour is described by creep curves. The curves of creep modules are dependent on stress, temperature and time. The dissertation thesis deals with the approximation of the creep modules by Prony series. Subsequently three procedures are proposed to take account of creep modules. The proposed procedures are used in two applications. The first application deals with the ring stiffness value of a corrugated sewage pipe. The ring stiffness value is influenced by the creep modulus. The other one deals with a thermoplastic flange connection. The clamping force is dependent on the creep modulus of thermoplastics. The problems were solved by ANSYS program system.
Effect of metal ions on the rheological behaviour of polyelectrolyte solutions
Lišková, Kateřina ; Běťák, Jiří (referee) ; Janeček, Jiří (advisor)
This diploma thesis is focused on two parts. The first one deals with rheological behavior of sodium carboxymethylcellulose (CMC-Na) solutions in the presence of sodium and calcium ions. The solutions of various concentrations were prepared by solubilization in aqueous solutions of NaCl or CaCl2. The effect of monovalent and bivalent ions on apparent viscosity and viscoelastic properties of these solutions was studied. It was found that in the case of low concentrations of CMC-Na in the sample (up to 0.5% w/w) the elastic character increases. At the same time the stiffness of the sample is higher with higher concentration of calcium ion in the solution. This increase might indicate the formation of gel network. On the other hand the viscosity of these solutions decreases with higher concentration of calcium ions. In case of solutions with concentration higher than 1.5% w/w changes of viscosity did not happen by influence of addition ions. Rheological behavior was compared also with solutions prepared without adding an electrolyte as well as with acid form of carboxymethylcellulose (CMC-H). In terms of second part the molecular dynamic simulations of hyaluronan tetramer both sodium and calcium in aqueous medium were performed. Structure and arrangement of water molecules in the surrounding of hyaluronan chain were studied. Structure was described by formalism of radial distribution functions. In the case of system containing sodium ions only, the obtained results are in accordance with earlier published data. Presence of calcium ions does not cause qualitative changes during the radial distribution functions in comparison with the system with sodium ions.
Microrheology of Biocolloids
Hnyluchová, Zuzana ; Omelka, Ladislav (referee) ; Kráčalík, Milan (referee) ; Pekař, Miloslav (advisor)
The main aim of the doctoral thesis was study of passive microrheological techniques as advanced methods for characterisation of viscoelastic properties of soft material. These techniques are able to provide certain advantaged or additional information on classical rheology. Several techniques from the wide range of passive microrheological group such as one particle video – microrhelogy with IDL data procesing, microrheology based on light scattering – DLS or FCS microrheology have been applied in practice during my PhD studies. New Matlab script has been also invented to simply obtain information about viscosity of low volume samples. Aplicability of techniques were studied on several various bicolloids such as solutions or gels of hyaluronic acid, on study of properties at the interfaces or on gelation proces studies of agarose. Obtained data were compared classical rheology results. Suitability of each technique for investigated systems or appropriate reccomendations for further measurements were didcussed based on obtained data. Main advantages and limites of passive microrheology techniques were also described in comparison wih classical rheology method.

National Repository of Grey Literature : 51 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.