National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Characterization of pore opening relevant residues in TM3 and TM4 domains of Orai1
ANDOVA, Ana-Marija
Calcium (Ca2+) ions play a crucial role in almost every aspect of cellular life. The most prominent calcium entry pathway into the cell is the calcium release-activated calcium (CRAC) channel, composed of the Orai1 protein, and the stromal interaction molecule STIM1. The channel is activated through conformational changes upon STIM1 coupling to the C-terminus of Orai1 protein following store depletion, which in turn allows Ca2+ influx into the cell. The abnormal function of the CRAC channel caused by mutations gives rise to distinct pathologies. Since it has not yet been elucidated how the signal propagation moves to the pore upon coupling, this thesis dives into its investigation by focusing on characterizing the TM3 and TM4 domains and their importance in leading to an open permissive conformation of the channel. The pivotal foundation for the creation of novel strategies in the modulation of the Orai1 function lies with the understanding of the dynamics of the Orai1 pore opening.
Calcium signalling in glial cells in progress of Alzheimer disease
Waloschková, Eliška ; Anděrová, Miroslava (advisor) ; Maršáková, Lenka (referee)
Alzheimer's disease (AD) is a neurodegenerative disorder affecting the entire central nervous system including glial cells. The mechanisms of this disease are not yet entirely clear, although recent studies suggest that among the known hallmarks of AD, such as accumulation of amyloid β and hyperphosphorylated tau, dysregulation of intracellular calcium homeostasis is proposed to be a significant feature both in neurons and glial cells, namely astrocytes and microglia. Glial cells play an important role both in healthy brain and during AD progression. Their major functions, such as supporting neurons or maintaining synapses, are impaired during this disease. Recent findings suggest that aberrant glial calcium signaling activated during AD, could possibly promote the malfunction of these cells and increase their inflammatory response, thus affecting neurons and causing brain damage. It is likely, that the ongoing inflammation and the impaired calcium signaling affect one another, consequently enhancing the progression of AD.
Model membranes studied by advanced fluorescence techniques and molecular dynamics simulations
Melcrová, Adéla ; Hof, Martin (advisor) ; Heyda, Jan (referee) ; Konopásek, Ivo (referee)
In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological...
Circadian system in astrocytes
Ľalíková, Kristýna ; Bendová, Zdeňka (advisor) ; Honc, Ondřej (referee)
The circadian system affects almost all cells in the mammalian body. These cells include astrocytes, which together with microglia and oligodendrocytes represent the main types of glial cells found in the brain. The first chapter of this thesis presents a summary of circadian system characteristics and focuses mainly on the molecular mechanism underlying its functioning. The second chapter is devoted to astrocytes, astrocyte calcium signaling, and the process of gliotransmission. The third and last chapter connects both topics and discusses the circadian system in astrocytes. It presents evidence of astrocytic circadian oscillations existence and physiological consequences of its action. Great attention is paid to circadian rhythms in gliotransmission, with a focus on gliotransmitters ATP and glutamate. As the most impressive output of the circadian system of astrocytes is presented the participation in maintaining the rhythmic activity of the main circadian oscillator located in the suprachiasmatic nucleus of the hypothalamus. Key words: circadian system, clock genes, astrocytes, gliotransmission, calcium signaling, glutamate, ATP
Model membranes studied by advanced fluorescence techniques and molecular dynamics simulations
Melcrová, Adéla ; Hof, Martin (advisor)
In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological...
Model membranes studied by advanced fluorescence techniques and molecular dynamics simulations
Melcrová, Adéla ; Hof, Martin (advisor)
In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological...
Model membranes studied by advanced fluorescence techniques and molecular dynamics simulations
Melcrová, Adéla ; Hof, Martin (advisor) ; Heyda, Jan (referee) ; Konopásek, Ivo (referee)
In this thesis, we start with the description of the biophysical properties of the plasma membrane models upon signaling processess such as the increased cytoso- lic concentration of calcium ions, or posttranslational modifications of membrane proteins. Calcium signaling is characterized by a rapid increase of its cytosolic concentration. We identify calcium binding sites and characterize the binding in the plasma membrane models of increasing complexity from pure phospholipid bilayers, through cholesterol and peptide rich lipid membranes, to membranes ex- tracted from HEK293 cells. We use Time-Dependent Fluorescent Shift method, which provides direct information on hydration and mobility in defined regions of a lipid bilayer, accompanied with molecular dynamic (MD) simulations, which give molecular details of the studied interactions. The initial step of signaling mediated by PAG protein is its double palmi- toylation. We investigate changes of the biophysical properties of both the lipid membrane and the peptide itself upon the incorporation of the palmitoyls. Em- ploying all atom MD simulations, we study inter- and intramolecular interactions as well as changes in membrane hydration, thickness, or lipid ordering. The second part of the thesis, realized in a direct collaboration with a phar- macological...
Calcium signalling in glial cells in progress of Alzheimer disease
Waloschková, Eliška ; Anděrová, Miroslava (advisor) ; Maršáková, Lenka (referee)
Alzheimer's disease (AD) is a neurodegenerative disorder affecting the entire central nervous system including glial cells. The mechanisms of this disease are not yet entirely clear, although recent studies suggest that among the known hallmarks of AD, such as accumulation of amyloid β and hyperphosphorylated tau, dysregulation of intracellular calcium homeostasis is proposed to be a significant feature both in neurons and glial cells, namely astrocytes and microglia. Glial cells play an important role both in healthy brain and during AD progression. Their major functions, such as supporting neurons or maintaining synapses, are impaired during this disease. Recent findings suggest that aberrant glial calcium signaling activated during AD, could possibly promote the malfunction of these cells and increase their inflammatory response, thus affecting neurons and causing brain damage. It is likely, that the ongoing inflammation and the impaired calcium signaling affect one another, consequently enhancing the progression of AD.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.