Národní úložiště šedé literatury Nalezeno 38 záznamů.  1 - 10dalšíkonec  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Structural studies of an abasic site DNA damage repair and DNA interstrand cross-link formation
Landová, Barbora
Poškozením DNA se rozumí jakákoli změna nebo modifikace struktury DNA, která se odchyluje od jejího přirozeného stavu. Abasické místo (Ap místo) je jedním z nejčastějších poškození DNA, které vzniká spontánní depurinací/depyrimidinací nebo enzymatickým odstraněním báze. Pokud se neopraví, může vést ke genetické mutaci a potenciálně způsobit onemocnění, jako je například rakovina. Pochopení mechanismu opravy DNA je zásadní pro lékařský výzkum a aplikaci. Bakteriální MutM je glykosyláza opravující DNA, která odstraňuje poškození DNA vzniklé oxidačním stresem a zabraňuje mutacím a genomové nestabilitě. MutM patří do rodiny prokaryotických enzymů Fpg/Nei a je strukturně i funkčně podobná se svým eukaryotickým protějškům, jako jsou NEIL1-NEIL3. Zde prezentuji dvě krystalové struktury MutM z patogenní Neisseria meningitidis: MutM holoenzym a MutM vázaný na DNA. Volný enzym existuje v otevřené konformaci, zatímco po vazbě na DNA, dochází k podstatným strukturním změnám a přeskupení domén enzymu i ohybu DNA. Jednou z poškození DNA opravovaných MutM je Ap místo, které, pokud není opraveno, může spontánně vést k vytvoření mezivláknového kovanetního prokřízení DNA (Ap-ICL) se sousedním adeninem na opačném vlákně DNA. Je známo, že glykosyláza NEIL3 odstraňuje Ap-ICL. Pomocí série různých oligonukleotidů jsme...
Odhalení molekulárních mechanismů opravy abazického meziřetězcového spojení DNA
Hušková, Andrea ; Šilhán, Jan (vedoucí práce) ; Bařinka, Cyril (oponent) ; Pavlíček, Jiří (oponent)
3 Abstrakt DNA jako primární nositelka genetické informace zaručuje organismům žít, růst, rozvíjet se a množit. Tato nejpodstatnější molekula v buňce však podléhá každou chvíli rozličným poškozením. Pokud není opraveno, buňka a organismus nakonec podlehne nevyhnutelné destrukci. Jedno z nejzávažnějších poškození je meziřetězcové kovalentní spojení DNA vycházející z abazického místa (Ap-ICL, z angl. Abasic site interstrand crosslink). Ap-ICL se tvoří spontánně z abazického místa kovalentní vazbou s adeninem na opačném řetězci. Nedostatek informací o opravných mechanismech, vlivu lokální sekvence a jeho stabilitě vede k otázkám ohledně osudu, toxicitě a výskytu těchto lézí v buňkách. Evoluce vytvořila několik mechanismů jak tato a další jiná poškození opravit a zajistit organismu jeho přetrvání. Nedávno objevená dráha známa pro opravu Ap-ICL dostala název po glykosylase zodpovědné za odstranění Ap-ICL. DNA glykosylasa NEIL3 je k Ap-ICL přivolána ubiquitylací DNA helikasy, která je součástí komplexu zodpovědného za replikaci DNA. Glykosylasa NEIL3 obsahuje několik domén s motivem zinkového prstu, které se vážou k poškozené DNA a zajišťují její katalytickou funkci. Momentálně není znám molekulární mechanismus opravného procesu glykosylasy NEIL3. S cílem odpovědět na zmíněné neznámé byla v předložené práci...
Structural studies of an abasic site DNA damage repair and DNA interstrand cross-link formation
Landová, Barbora ; Bouřa, Evžen (vedoucí práce) ; Bařinka, Cyril (oponent) ; Schneider, Bohdan (oponent)
Poškozením DNA se rozumí jakákoli změna nebo modifikace struktury DNA, která se odchyluje od jejího přirozeného stavu. Abasické místo (Ap místo) je jedním z nejčastějších poškození DNA, které vzniká spontánní depurinací/depyrimidinací nebo enzymatickým odstraněním báze. Pokud se neopraví, může vést ke genetické mutaci a potenciálně způsobit onemocnění, jako je například rakovina. Pochopení mechanismu opravy DNA je zásadní pro lékařský výzkum a aplikaci. Bakteriální MutM je glykosyláza opravující DNA, která odstraňuje poškození DNA vzniklé oxidačním stresem a zabraňuje mutacím a genomové nestabilitě. MutM patří do rodiny prokaryotických enzymů Fpg/Nei a je strukturně i funkčně podobná se svým eukaryotickým protějškům, jako jsou NEIL1-NEIL3. Zde prezentuji dvě krystalové struktury MutM z patogenní Neisseria meningitidis: MutM holoenzym a MutM vázaný na DNA. Volný enzym existuje v otevřené konformaci, zatímco po vazbě na DNA, dochází k podstatným strukturním změnám a přeskupení domén enzymu i ohybu DNA. Jednou z poškození DNA opravovaných MutM je Ap místo, které, pokud není opraveno, může spontánně vést k vytvoření mezivláknového kovanetního prokřízení DNA (Ap-ICL) se sousedním adeninem na opačném vlákně DNA. Je známo, že glykosyláza NEIL3 odstraňuje Ap-ICL. Pomocí série různých oligonukleotidů jsme...
Biogeneze a funkce jaderných železo-sirných proteinů
Panova, Ekaterina ; Benda, Martin (vedoucí práce) ; Smutná, Tamara (oponent)
Železo-sirné klastry jsou důležitými anorganickými kofaktory mnoha buněčných reakcí, včetně těch, které probíhají v jádře. Jaderné železo-sirné proteiny hrají důležitou roli při replikaci DNA, opravách genomu a udržovaní jeho stability. Biosyntéza těchto železo-sirných klastrů začíná v mitochondriích pomocí ISC dráhy (iron-sulfur cluster assembly) pokračuje v cytosolu v CIA dráze (cytosolic iron-sulfur cluster assembly) a končí zabudováním klastrů do cílových apoproteinů, kterými jsou například polymerázy, primázy, helikázy, endonukleázy nebo glykosylázy. Tato bakalářská práce shrnuje současné poznatky o dráhách biosyntézy železo-sirných klastrů, o funkcích jaderných železo-sirných proteinů a o úloze železo-sirných klastrů v těchto proteinech, včetně fenotypů a klinických projevů způsobených jejich absencí. Klíčová slova: železo-sirné klastry, metaloproteiny, jádro, replikace DNA, oprava DNA
Vliv chromatinu na opravu dvouvláknových zlomů DNA po štěpení CRISPR/Cas a dalších programovatelných nukleáz u rostlin
Trojan, Jakub ; Přibylová, Adéla (vedoucí práce) ; Procházková, Klára (oponent)
Rostliny mají velkou odolnost vůči ionizujícímu záření i díky kvalitnímu opravnému aparátu na opravu dvouvláknových zlomů. Dvouvláknové zlomy jsou v rostlinách opravovány čtyřmi hlavními drahami. Nejčastěji probíhá rychlá oprava pomocí nehomologního spojování konců (NHEJ), spojující konce DNA bez většího zpracování. Přesnější, zato pomalejší a složitější, je oprava prostřednictvím homologní rekombinace (HR) využívající k opravě dlouhé úseky homologního řetězce DNA. Využívaná je přednostně v oblasti aktivních genů během S a G2 fáze buněčného cyklu. Opravy probíhají dále skrze Theta zprostředkované spojování konců (TMEJ) a single strand annealing (SSA). Obě tyto dráhy jsou řízené kratší homologií mezi konci DNA vytvořenými dvouvláknovým zlomem. Často opomíjenou součástí oprav je i překonávání represivních vlastností chromatinu, který chrání genom před poškozením a přístupem nukleáz, ale zároveň brání i přístupu opravných proteinů. Tato práce shrnuje dosavadní znalosti o opravách DNA u rostlin a vlivu chromatinu ne pouze na ně, ale i na aktivitu programovatelných nukleáz využívaných v genovém inženýrství, jako jsou zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALEN) a clustered regularly interspaced short palindromic repeats / CRISPR associated (CRISPR/Cas). Klíčová...
Role WSS1 proteasy v DNA reparačních procesech kvasinkové buňky.
Adámek, Michael ; Grantz Šašková, Klára (vedoucí práce) ; Čáp, Michal (oponent)
Zachování integrity DNA je v průběhu života kritické pro každý živý organismus. Organismy si proto vyvinuly mnoho způsobů, jak detekovat a opravit různé typy poškození DNA, způsobené endogenními i exogenními vlivy, vyúsťující dále v replikační stres. Chyby v těchto opravných mechanismech mohou vést k závažným lidským onemocněním, jako jsou neurologické poruchy, familiární druhy onkologických onemocnění nebo vývojové syndromy. V této diplomové práci byla zkoumána funkce kvasinkového proteinu Wss1, metaloproteasy, která se podílí na nedávno objevené DNA opravné dráze, která proteolyticky odstraňuje proteiny kovalentně zachycené na zuje silnou negativní interakci s jinou proteasou opravující DNA, Ddi1, přičemž bylo objeveno, že kvasinkový kmen postrádající současně geny je hypersenzitivní na hydroxyureu. Hydroxyurea inhibuje ribonukleotidreduktasu, čímž v konečném důsledk způsobuje zastavení buňky v fázi buněčného cyklu. V rámci této diplomové práce byly na základě předchozích studií provedeny tzv. "rescue" experimenty s různými variantami Wss1, postrádajícími jednotlivé domény či obsahujícími bodové aminokyselinové záměny. Tyto experimenty následně posloužily k posouzení účasti jednotlivých domén proteinu Wss1 v odpovědi na replikační stres vyvolaný hydroxymočovinou.
Genetic variability in sporadic colorectal cancer: Searching for novel risk, prognostic and predictive biomarkers.
Jirásková, Kateřina ; Vodička, Pavel (vedoucí práce) ; Machoň, Ondřej (oponent) ; Eckschlager, Tomáš (oponent)
SOUHRN Rakovina tlustého střeva a konečníku (kolorektální karcinom, KRK) představuje celosvětově závažný zdravotní problém. I přes pokroky v diagnostice a v léčebných metodách zůstává prognóza onemocnění špatná. Pro zlepšení celkové míry přežívání je důležité umět rozpoznat jedince s vyšším rizikem vzniku KRK a odhalit onemocnění v rané potenciálně léčitelné fázi. Současně identifikace pacientů, kteří budou reagovat negativně na konkrétní léčbu, by přispěla ke snížení nadbytečné chemoterapie a k minimalizaci toxicity související s léčbou. Cílem této práce bylo hledání nových diagnostických, prognostických a prediktivních DNA-biomarkerů pro sporadickou formu KRK. Každý člověk je geneticky jedinečný a nalezení těchto biomarkerů by lékařům usnadnilo diagnózu a výběr optimální terapie pro každého pacienta s KRK na základě jejich molekulárního profilu. Pro dosažení tohoto cíle jsme zkoumali několik kandidátních genů u zdravých jedinců i u nově diagnostikovaných pacientů se sporadickou formou KRK. Výsledky této PhD práce byly shrnuty v sedmi impaktovaných publikacích. Hlavními závěry jsou: 1) Genetické varianty v cílových oblastech pro vazbu microRNA (miRSNPs) v genech opravy dvouřetězcových zlomů, genech důležitých pro etiologii KRK a mucinových genech souvisí buď s rizikem KRK nebo s odpovědí na léčbu, 2)...
Účast eukaryotických DNA opravných mechanismů ve virové replikaci
Hron, Tomáš ; Španielová, Hana (vedoucí práce) ; Harant, Karel (oponent)
Odpověď na poškození DNA eukaryot je důležitý mechanismus, který zajišťuje stabilitu genomu. Jeho složky jsou mimo jiné mobilizovány i v průběhu virové infekce jako reakce na cizorodou nukleovou kyselinu. Ukazuje se, že některé viry také aktivují DNA opravné mechanismy záměrně a využívají je pro zajištění svého replikačního cyklu. Tato aktivace je z velké části zprostředkována virovými proteiny, které přímo interagují s buněčnými faktory. Klíčové proteiny DNA opravných mechanismů jsou často asociovány s centry virové replikace a pravděpodobně se podílejí na jejím průběhu. Dále jsou také využívány pro navození vhodného prostředí k virové reprodukci v buňce. Konkrétní mechanismy, kterými se faktory DNA opravných drah podílejí na virové infekci, jsou však z velké části nejasné. V této práci jsou shrnuty principy interakce virů s eukaryotickou odpovědí na poškození DNA a popsány hlavní virové čeledě, které ji aktivují a využívají pro replikaci svého genomu.
Posttranslační modifikace adaptorového proteinu DAXX v buněčné odpovědi na genotoxický stres
Bražina, Jan ; Anděra, Ladislav (vedoucí práce) ; Černý, Jan (oponent) ; Vodička, Pavel (oponent)
Zachování kontinuity chromozomů a úplné genetické informace v lidských buňkách je rozhodující pro přežití buňky resp. celého organismu a zabraňuje konverzi normálních diploidních buněk v buňky s nestabilním genomem. Buněčná DNA je však vystavována endogennímu i exogennímu stresu, který může vést k poškození její struktury. Během evoluce se ve vyšších eukaryotech vyvinulo několik molekulárních mechanismů, které tato poškození detekují a opravují, a zajišťují tak v buňkách chromosomovou stabilitu. Tato odpověď se nazývá buněčná odpověď na poškození DNA (DDR). Jedním z nejzávažnějších druhů poškození DNA jsou tzv. dvojřetězcové zlomy (DSB), kdy dojde v těsné blízkosti k přerušení kovalentní vazby mezi cukrem a fosfátem. DSB spouští vlnu posttranslačních modifikací, které regulují proteinové interakce, jadernou lokalizaci a katalytickou aktivitu desítek až stovek proteinů. Tyto modifikace zahrnují acetylace, metylace, SUMOylace, ubikvitinylace a zejména pak fosforylace. Mezi nejvýznamnější kinázy účastnící se DDR jsou kinázy ATM, ATR a DNA-PK, jež jsou aktivovány bezprostředně po detekci poškozeného místa. DAXX (death-associated protein 6) je adaptorový, převážně jaderný protein, který se se v buňkách účastní sbalování histonové varianty H3.3, remodelace chromatinu, modulace genové exprese či...
Struktura, funkce a význam proteinu BRCA1
Hojný, Jan ; Kleibl, Zdeněk (vedoucí práce) ; Falk, Martin (oponent)
Studium příčinných faktorů vzniku dědičně podmíněné formy karcinomů prsu a ovarií vedlo k objevu genu Breast Cancer 1, (BRCA1). Produktem tohoto tumor supresorového genu je jaderný fosfoprotein sehrávající kritickou úlohu v opravě genomové DNA, čímž se podílí na kontrole genomové integrity. Úloha proteinu BRCA1 spočívá především ve správném sestavení reparačních komplexů, které se seskupují v místech dvouřetězcových zlomů DNA. Nadto protein BRCA1 přispívá i k regulaci kontrolních bodů buněčného cyklu a k regulaci genové exprese v důsledku poškození genomové DNA, díky čemuž sehrává jednu z klíčových rolí v celkové intracelulární odpovědi na genotoxické poškození. Ztráta této funkce vede k selhání DNA reparačních mechanizmů za současné tolerance genových alterací v takto poškozených buňkách. Stav této genomové nestability je základem maligní transformace a časným krokem vzniku zhoubného nádoru v buňkách s inaktivovaným proteinem BRCA1. Cílem této práce je shrnutí poznatků o struktuře, známých funkcích a významu proteinu BRCA1 především z pohledu nových objevů, které se týkají tvorby různých multiproteinových komplexů, ve kterých protein BRCA1 hraje úlohu muliplatformního interakčního partnera, zásadního pro správnou funkci reparace DNA.

Národní úložiště šedé literatury : Nalezeno 38 záznamů.   1 - 10dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.