National Repository of Grey Literature 10 records found  Search took 0.01 seconds. 
Properties and in vitro Degradation of Metalic Biodegradable Materials
Ročňáková, Ivana ; Trojanová, Zuzanka (referee) ; Vojtěch,, Dalibor (referee) ; Podrábský, Tomáš (advisor)
Biodegradable metallic materials for medical applications have received considerable attention in recent years. The main reason is that they provide high potential for fabrication of temporal orthopedic implants such as bone fixation devices. Magnesium is an excellent candidate for fabrication of biodegradable implants due to its biocompatibility, mechanical properties similar to human bone and relevance for biological body functions. The fast degradation rate of magnesium and its biodegradable alloys in physiological environment limits its clinical application. Another attractive material in the field of biodegradable materials is zinc, which is among the essential elements in human body. Zinc exhibits an excellent corrosion resistance, and inferior biocompatibility compared to with magnesium. Hence, surface modification to form a hard, dense/porous, biocompatible and corrosion resistant modified layer has become an interesting topic in magnesium base biomaterials. Since hydroxyapatite is well tolerated by living organisms and in addition, improves the bone growth, it appears to be excellent candidate for such coatings on surface of biodegradable materials (e.g. Mg, Zn). This thesis is focused on comparison of corrosion behavior of pure non ferrous metals (Mg, Zn) and metals coated with hydroxyapatite, in simulated body fluids. The present approach is the use of modified atmospheric plasma spray technology to produce the hydroxyapatite coatings – suspension spraying. Composition and structure of the coatings and corrosion products were studied by light microscopy, scanning electron microscopy equipped with energy dispersive microanalyzer and X-ray diffraction. Corrosion of Mg and Zn samples was monitored by weight loss and determined by X ray and micro-tomography. The application of the HA coating resulted in decrease of corrosion rate of pure Mg. The corrosion rate of coated Mg samples was lower by 27,3 % in comparison with the corrosion rate of pure non coated Mg. Corrosion degradation of uncoated and coated Zn samples was minimal. The aplication of HA on the non ferrous surface appears to be a very promising method to improve corrosion and biological properties of these biodegradable materials.
Fatigue properties of magnesium alloy AZ31 prepared by rotary swaging method
Hofrichterová, Tereza ; Drozd, Zdeněk (advisor) ; Trojanová, Zuzanka (referee)
Magnesium alloys are considered to have a high potential for applications in many engineering fields. Specifically, AZ alloys are of low weight, good castability and strength and they are also fairly resistant to corrosion. Moreover, the mechanical properties can be further improved by metalworking tech- niques. Methods of severe plastic deformation are often used for this purpose. Rotary swagging, which is one of those methods, is used for tubes and rods crafting. This method allows the material structure to reach homogeneous microstructure in its full volume. There has already been a fine amount of research effort and studies done in regards to mechanical properties of AZ alloys prepared with the methods of severe plastic de- formation. The ultimate goal of this thesis is to study fatigue properties of said alloys, which have not been subjected to such research in sufficient volume as of yet. 1
Properties and in vitro Degradation of Metalic Biodegradable Materials
Ročňáková, Ivana ; Trojanová, Zuzanka (referee) ; Vojtěch,, Dalibor (referee) ; Podrábský, Tomáš (advisor)
Biodegradable metallic materials for medical applications have received considerable attention in recent years. The main reason is that they provide high potential for fabrication of temporal orthopedic implants such as bone fixation devices. Magnesium is an excellent candidate for fabrication of biodegradable implants due to its biocompatibility, mechanical properties similar to human bone and relevance for biological body functions. The fast degradation rate of magnesium and its biodegradable alloys in physiological environment limits its clinical application. Another attractive material in the field of biodegradable materials is zinc, which is among the essential elements in human body. Zinc exhibits an excellent corrosion resistance, and inferior biocompatibility compared to with magnesium. Hence, surface modification to form a hard, dense/porous, biocompatible and corrosion resistant modified layer has become an interesting topic in magnesium base biomaterials. Since hydroxyapatite is well tolerated by living organisms and in addition, improves the bone growth, it appears to be excellent candidate for such coatings on surface of biodegradable materials (e.g. Mg, Zn). This thesis is focused on comparison of corrosion behavior of pure non ferrous metals (Mg, Zn) and metals coated with hydroxyapatite, in simulated body fluids. The present approach is the use of modified atmospheric plasma spray technology to produce the hydroxyapatite coatings – suspension spraying. Composition and structure of the coatings and corrosion products were studied by light microscopy, scanning electron microscopy equipped with energy dispersive microanalyzer and X-ray diffraction. Corrosion of Mg and Zn samples was monitored by weight loss and determined by X ray and micro-tomography. The application of the HA coating resulted in decrease of corrosion rate of pure Mg. The corrosion rate of coated Mg samples was lower by 27,3 % in comparison with the corrosion rate of pure non coated Mg. Corrosion degradation of uncoated and coated Zn samples was minimal. The aplication of HA on the non ferrous surface appears to be a very promising method to improve corrosion and biological properties of these biodegradable materials.

See also: similar author names
1 TROJANOVÁ, Zita
1 Trojanová, Zuzana
Interested in being notified about new results for this query?
Subscribe to the RSS feed.