National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Conserved mechanism for targeting of Tail-anchored proteins in eukaryotes
Najdrová, Vladimíra
Approximately one-fourth of all cellular proteins represent integral membrane proteins (IMPs) that are transported through the cytosol across or into the organellar or plasma membrane. Transport of IMPs requires precise timing which needs to be precisely regulated for them to reach their final destination. Tail-anchored (TA) proteins represent specific class of membrane proteins that lack the N-terminal signal peptide, which targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for the co-translational transport. Instead, they possess single C-terminal transmembrane domain (TMD) that serves as their targeting signal. Therefore, TA proteins are transported only post-translationally when the C-terminal TMD appears from the ribosome. The Guided Entry of Tail-anchored proteins (GET) pathway is the dominant way of how TA proteins find their way into the ER membrane. It is a multistep process that is mediated by six (Sgt2, Get1-Get5) proteins in yeast and seven (plus Bag6) proteins in human, which involves recognition of a TA protein, its targeting to the ER membrane and the actual membrane insertion. In addition to the model cell systems, some of GET pathway components were studied in plants and recently in Plasmodium falciparum, which makes our knowledge on the distribution and the...
Conserved mechanism for targeting of Tail-anchored proteins in eukaryotes
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Borgese, Nica (referee) ; Svärd, Staffan (referee)
Approximately one-fourth of all cellular proteins represent integral membrane proteins (IMPs) that are transported through the cytosol across or into the organellar or plasma membrane. Transport of IMPs requires precise timing which needs to be precisely regulated for them to reach their final destination. Tail-anchored (TA) proteins represent specific class of membrane proteins that lack the N-terminal signal peptide, which targets the nascent polypeptide to the endoplasmic reticulum (ER) membrane for the co-translational transport. Instead, they possess single C-terminal transmembrane domain (TMD) that serves as their targeting signal. Therefore, TA proteins are transported only post-translationally when the C-terminal TMD appears from the ribosome. The Guided Entry of Tail-anchored proteins (GET) pathway is the dominant way of how TA proteins find their way into the ER membrane. It is a multistep process that is mediated by six (Sgt2, Get1-Get5) proteins in yeast and seven (plus Bag6) proteins in human, which involves recognition of a TA protein, its targeting to the ER membrane and the actual membrane insertion. In addition to the model cell systems, some of GET pathway components were studied in plants and recently in Plasmodium falciparum, which makes our knowledge on the distribution and the...
Cellular Protein Transport and Its Role in Patogenesis
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Uzlíková, Magdalena (referee)
The main topic of this thesis are the protein secretion processes in several important human parasites - Toxoplasma gondii, Plasmodium falciparum, Trypanosoma cruzi, Leishmania spp. and Giardia intestinalis. Described here are the parasite's and the host proteins which participate in the pathogenic processes involving the protein secretion. As shown here, the protein secretion into the host environment is one of key tools serving the parasite to survive within and manipulate the host organism. Interestingly, different parasitic organisms use functionally and evolutionary distinct strategies to fulfill this aim. Key words secretory pathway, translocon, signal sequence, Toxoplasma gongii, Plasmodium falciparum, Trypanosoma cruzi, Leishmania spp., Giardia intestinalis
The role of untranslated mRNA regions in Giardia intestinalis.
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Zubáčová, Zuzana (referee)
Giardia intestinalis is an anaerobic protozoan pathogen, agent of the disease known as giardiasis. The regulation of gene expression during giardia cell- and life-cycle has been poorly studied so far, with the exception of variable surface proteins, which constitute the immunoprotective coat of the cell. In this diploma thesis, we focus on the possible role of the 3' untranslated region (3'UTR) of mRNA that mediate stability and localization of mRNA transcripts. We use RNA binding proteins of PUF family, which control the function of the target transcripts by their repression, activation or sequestration, to monitor and verify the role of 3'UTRs. These only eukaryotic proteins are highly evolutionarily conserved. Each of them contain highly conserved C-terminal domain, which specificly binds to 3'UTR of mRNAs. We have identified five different PUF proteins in the genome of G. intestinalis (GiPUF), cinfirmed their expression in G. intestinalis trophozoites and located all five proteins in the cytoplasm. GiPUF2, GiPUF3 and GiPUF5 show an additional affinity to the surface of the endoplasmic reticulum. We have identified the C-terminal binding domain in protein sequences of all GiPUF. The most conserved GiPUF4 contain eight binding sites, nearly identical to the binding site of human Pum1 protein,...
The role of untranslated mRNA regions in Giardia intestinalis.
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Zubáčová, Zuzana (referee)
Giardia intestinalis is an anaerobic protozoan pathogen, agent of the disease known as giardiasis. The regulation of gene expression during giardia cell- and life-cycle has been poorly studied so far, with the exception of variable surface proteins, which constitute the immunoprotective coat of the cell. In this diploma thesis, we focus on the possible role of the 3' untranslated region (3'UTR) of mRNA that mediate stability and localization of mRNA transcripts. We use RNA binding proteins of PUF family, which control the function of the target transcripts by their repression, activation or sequestration, to monitor and verify the role of 3'UTRs. These only eukaryotic proteins are highly evolutionarily conserved. Each of them contain highly conserved C-terminal domain, which specificly binds to 3'UTR of mRNAs. We have identified five different PUF proteins in the genome of G. intestinalis (GiPUF), cinfirmed their expression in G. intestinalis trophozoites and located all five proteins in the cytoplasm. GiPUF2, GiPUF3 and GiPUF5 show an additional affinity to the surface of the endoplasmic reticulum. We have identified the C-terminal binding domain in protein sequences of all GiPUF. The most conserved GiPUF4 contain eight binding sites, nearly identical to the binding site of human Pum1 protein,...
Cellular Protein Transport and Its Role in Patogenesis
Najdrová, Vladimíra ; Doležal, Pavel (advisor) ; Uzlíková, Magdalena (referee)
The main topic of this thesis are the protein secretion processes in several important human parasites - Toxoplasma gondii, Plasmodium falciparum, Trypanosoma cruzi, Leishmania spp. and Giardia intestinalis. Described here are the parasite's and the host proteins which participate in the pathogenic processes involving the protein secretion. As shown here, the protein secretion into the host environment is one of key tools serving the parasite to survive within and manipulate the host organism. Interestingly, different parasitic organisms use functionally and evolutionary distinct strategies to fulfill this aim. Key words secretory pathway, translocon, signal sequence, Toxoplasma gongii, Plasmodium falciparum, Trypanosoma cruzi, Leishmania spp., Giardia intestinalis

Interested in being notified about new results for this query?
Subscribe to the RSS feed.