National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Gene regulation in four dimensions
Vaňková Hausnerová, Viola ; Lanctôt, Christian (advisor) ; Převorovský, Martin (referee) ; Krásný, Libor (referee)
Transcription has turned out to be a discontinuous process when imaged at a single cell level. This observation is referred to as transcriptional bursting or pulsing and has been detected in a variety of organisms ranging from bacteria to mammalian cells. The dynamics of transcriptional pulsing are influenced by the properties intrinsic to the transcriptional process, as well as by upstream factors: chromatin environment, signalling molecules, cell cycle stage etc. In the first part of this thesis, we focused on the regulation of transcriptional pulsing in the nucleolus. Using imaging of living cells, we detected pulsatile transcription of a transgene with nucleolar localization whose expression was mediated by RNA polymerase II. In the second part of the thesis, we investigated the relationship between chromatin decondensation and transcriptional dynamics. We used hyperosmotic medium to induce global condensation of chromatin and revealed that upon chromatin decondensation, a transient spike in transcriptional intensity occurs in induvial living cells. Next, we analysed expression of TFRC and POLR2A genes in several cell cycle stages using single molecule RNA FISH. We detected increase in both frequency and size of transcriptional pulses during a limited time window which coincided with chromatin...
Nuclear architecture and gene expression in Caenorhabditis elegans
Bolková, Jitka ; Lanctôt, Christian (advisor) ; Macůrková, Marie (referee) ; Kostrouch, Zdeněk (referee)
Nuclear architecture and gene expression in Caenorhabditis elegans Mgr. Jitka Bolková ABSTRACT The parental genomes are initially separated in each pronucleus after fertilization. During the first mitosis this spatial distribution is being disintegrated. In my thesis we used green-to-red phoroconversion of Dendra2-H2B-labeled pronuclei to distinguish maternal and paternal chromatin domains and to track their distribution in space in living Caenorhabditis elegans embryos starting shortly after fertilization. Both of the parental chromatin domains within the nucleus are separated in the zygote and at the 2-cell stage. Intermingling occurs first after chromatin decondensation at the beginning of the cell cycle at the 4-cell stage. To our knowledge, we report to the first live observation of the separation and subsequent mixing of parental chromatin during embryogenesis. Following of the photoconverted chromatin also allowed us to detect a reproducible 180ř rotation of the nuclei during cytokinesis of the zygote. Tracking of fluorescently-labelled P granules and polar bodies showed that the entire embryo rotates during the first cell division. In the second part of the thesis we used the C. elegans model to investigate relationship between nuclear architecture and gene expression. We focused on localization of...
Development of ultrastructural methods and their application in studies on the cell nucleus
Filimonenko, Anatoly ; Hozák, Pavel (advisor) ; Nebesářová, Jana (referee) ; Lanctôt, Christian (referee)
Despite the capabilities of molecular-biological methods in deciphering the interplay of different biological molecules and molecular complexes, the understanding of respective functions in living cells requires application of in situ methods. Obviously, these methods should provide maximal resolution and the best possible preservation of the biological object in a native state, as well as correct statistical evaluation of the spatial characteristics of detected molecular players. Transmission electron microscopy provides the highest possible resolution for analysis of biological samples. The simultaneous detection of biological molecules by means of indirect immunolabeling provides valuable information about their localization in cellular compartments and their possible interactions in macromolecular complexes. To analyze this, we have developed a complex stereological method for statistical evaluation of immunogold clustering and colocalization patterns of antigens on ultrathin sections, including a user-friendly interface. Functional microarchitecture of DNA replication and transcription sites has been successfully characterized using the developed stereological tools. Our data demonstrate that DNA replication is compartmentalized within cell nuclei at the level of DNA foci and support the view...
Regulation of alternative splicing via chromatin modifications
Hozeifi, Samira ; Staněk, David (advisor) ; Krásný, Libor (referee) ; Lanctôt, Christian (referee)
Alternative splicing (AS) is involved in expansion of transcriptome and proteome during cell growth, cell death, pluripotency, cell differentiation and development. There is increasing evidence to suggest that splicing decisions are made when the nascent RNA is still associated with chromatin. Here, I studied regulation of AS via chromatin modification with main focus on histone acetylation. First, we demonstrate that activity of histone deacetylases (HDACs) influences splice site selection in 700 genes. We provided evidence that HDAC inhibition induces histone H4 acetylation and increases RNA Polymerase II (RNA Pol II) processivity along an alternatively spliced element. In addition, HDAC inhibition reduces co-transcriptional association of the splicing regulator SRp40 with the target fibronectin exon. Further we showed that histone acetylation reader, Brd2 protein, affect transcription of 1450 genes. Besides, almost 290 genes change their AS pattern upon Brd2 depletion. We study distribution of Brd2 along the target and control genes and find that Brd2 is specifically localized at promoters of target genes only. Surprisingly, Brd2 interaction with chromatin cannot be explained solely by histone acetylation, which suggests that other protein-domains (in addition to bromodomains) are important for...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.