National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Engineering and selection of protein binders recognising medically important cytokines
Huličiak, Maroš
Protein engineering attracts more attention as a powerful tool of biotechnology and medicine. Small, engineered proteins derived from protein molecules of stable fold, the so called scaffolds, are potential replacements of supplements of more widely used antibodies. In this thesis, I introduce utilization of two scaffold molecules designed in our laboratory for development of stable and specific protein binders of high affinity. This thesis discusses the development of binders interacting with medically important human cytokines and their cellular receptors, interleukin-10, interleukin-28 receptor, and interleukin-9 receptor alpha. Recombinant cytokine and receptor proteins were expressed in eukaryotic cells in high yields and quality and served as molecular targets for selections using various display methods of directed evolution. We demonstrated that application of ribosome and yeast display methods or their unconventional combination in a newly developed integrated pipeline leads to successful generation of high affinity and specificity binders based on newly designed protein scaffolds called 57aBi and 57bBi.
Engineering and selection of protein binders recognising medically important cytokines
Huličiak, Maroš ; Schneider, Bohdan (advisor) ; Pichová, Iva (referee) ; Kukačka, Zdeněk (referee)
Protein engineering attracts more attention as a powerful tool of biotechnology and medicine. Small, engineered proteins derived from protein molecules of stable fold, the so called scaffolds, are potential replacements of supplements of more widely used antibodies. In this thesis, I introduce utilization of two scaffold molecules designed in our laboratory for development of stable and specific protein binders of high affinity. This thesis discusses the development of binders interacting with medically important human cytokines and their cellular receptors, interleukin-10, interleukin-28 receptor, and interleukin-9 receptor alpha. Recombinant cytokine and receptor proteins were expressed in eukaryotic cells in high yields and quality and served as molecular targets for selections using various display methods of directed evolution. We demonstrated that application of ribosome and yeast display methods or their unconventional combination in a newly developed integrated pipeline leads to successful generation of high affinity and specificity binders based on newly designed protein scaffolds called 57aBi and 57bBi.
Novel protein binders targeting marker of epithelial cells
Huličiak, Maroš ; Malý, Petr (advisor) ; Anděra, Ladislav (referee)
Fast and precise quantification of circulating tumour cells (CTC) in lung adenocarcinoma is a pivotal step in acceleration of diagnosis, selection of early therapy and estimation of treatment prognosis. Development of a new type of microfluidic device based on detection and quantification of epithelial- and mesenchymal-type CTC by high-affinity and cell-type specific protein binders anchored to a microfluidic chip surface represents a highly innovative approach. In this work, we used EpCAM membrane glycoprotein as a target for generation of epithelial cell- specific protein binders by a directed evolution of proteins selected from highly complex combinatorial libraries derived from albumin-binding domain scaffold (ABD) or human muscle protein domain-derived "Myomedin" scaffold. Collections of EpCAM-binding candidates from the both used libraries were generated and particular binding variants were further characterized by DNA sequencing, biochemically and by functional cell-surface binding assays. The best candidates might serve as robust anchor proteins of a microfludic chip. Key words: epithelial cell, EpCAM, protein binder, ribosome display, combinatorial library, protein scaffold
Novel protein binders targeting marker of epithelial cells
Huličiak, Maroš ; Malý, Petr (advisor) ; Anděra, Ladislav (referee)
Fast and precise quantification of circulating tumour cells (CTC) in lung adenocarcinoma is a pivotal step in acceleration of diagnosis, selection of early therapy and estimation of treatment prognosis. Development of a new type of microfluidic device based on detection and quantification of epithelial- and mesenchymal-type CTC by high-affinity and cell-type specific protein binders anchored to a microfluidic chip surface represents a highly innovative approach. In this work, we used EpCAM membrane glycoprotein as a target for generation of epithelial cell-specific protein binders by a directed evolution of proteins selected from highly complex combinatorial libraries derived from albumin-binding domain scaffold (ABD) or human muscle protein domain-derived "Myomedin" scaffold. Collections of EpCAM-binding candidates from the both used libraries were generated and particular binding variants were further characterized by DNA sequencing, biochemically and by functional cell-surface binding assays. The best candidates might serve as robust anchor proteins of a microfludic chip. Key words: epithelial cell, EpCAM, protein binder, ribosome display, combinatorial library, protein scaffold
Selection approaches in directed evolution of binding proteins
Huličiak, Maroš ; Malý, Petr (advisor) ; Hlouchová, Klára (referee)
Artificial binding proteins derived from small protein domains attract attention as a promising alternative to monoclonal antibodies and can be used in many kinds of applications. They are useful in diagnosis of human diseases, seem to be a clue for more efficient vaccine development preventing from global diseases such as AIDS, can exhibit a therapeutic potential or improve purification techniques. For the selection of protein variants with desired properties such as high specificity and binding affinity, more than 10 different selection techniques have been developed. So called display techniques such as phage display, yeast display, retroviral display or baculovirus display are based on protein expression from different vectors. Contrary that, ribosome display, mRNA display and CIS display are cell-free systems based on in vitro translation. Development of different selection approaches allows production of post- translationally glycosylated, phosphorylated and acetylated proteins, increased yield of the produced binders and improved their binding properties. The submitted work provides an overview of current selection techniques, compare their parametres regarding to combinatorial libraries, describes their advantageous properties and limitations, and focus on a practical utilization of...

See also: similar author names
1 Huličiak, Martin
Interested in being notified about new results for this query?
Subscribe to the RSS feed.