National Repository of Grey Literature 11 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Impact of NMDA antagonists on neuroplasticity as a biological phenomenon
Kalivodová, Michaela ; Valeš, Karel (advisor) ; Krůšek, Jan (referee)
Neuroplasticity is a fundamental biological phenomenon that accompanies us throughout our lives, both in health and illness. By studying neuroplasticity, we can understand serious neurodegenerative diseases, help remodel the nervous system after damage, or make our actions more efficient in today's world. The first chapter of this thesis will discuss neuroplasticity in the physiological state, describing the development of nervous system, learning and memory, different types of neuroplasticity, and other ways to modify neurogenesis. The following chapter deals with the role of neuroplasticity in disease, its impairment in neuropsychiatric diseases. The most common ones will be described, such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease. The next part of the thesis will discuss the molecular biology of NMDA receptor including structure, activation and excitotoxicity of the NMDA receptor, which is distinct from other receptors. Subsequently, selected NMDA antagonists competitive, non-competitive, uncompetitive, as well as glycine agonists and other selected natural modulators of the NMDA receptor will be described. Finally, this thesis will present the molecular and cellular mechanisms of the BDNF and mTOR pathways, knowledge of which provides a basis for further...
The role of nociceptive synaptic transmission modulation
Heleš, Mário ; Paleček, Jiří (advisor) ; Rokyta, Richard (referee) ; Krůšek, Jan (referee)
Pain represents a major symptom in a multitude of medical conditions and can often become the main negative factor in a patient's low quality of life. The complex issue of pain management is further underscored by the reduced efficacy of conventional analgesics in conditions such as neuropathic pain. Neuropathic pain, unlike acute nociceptive pain, originates from damage to the peripheral or central nervous system and often develops into chronic pain syndrome. Most analgesics available today provide only limited and unsatisfactory analgesia in chronic neuropathic pain and are often associated with severe adverse effects. Modulation of nociceptive transmission in spinal cord dorsal horn (SCDH) stands out in recent research as a pivotal mechanism, especially in chronic pain development and maintenance. The major aim of this doctoral thesis was to investigate how pain-associated processes interfere with opioid-induced analgesia, with the main focus on the interaction between chemokine (C-C motif) ligand 2 (CCL2), transient receptor potential vanilloid type 1 (TRPV1), and μ-opioid receptor (MOR). To achieve a better insight into opioid signaling in SCDH we studied the following issues: (I.) How does CCL2 modulate MOR-mediated effects on nociceptive synaptic transmission in SCDH neurons and in vivo...
Modulation of synaptic transmission in the development of painful states
Slepička, Jakub ; Paleček, Jiří (advisor) ; Hejnová, Lucie (referee)
My thesis introduces the topic of nociceptive signalisation and processes involved in the formation and spreading of neuropathic pain. This study focuses on the mechanisms of nociceptive synaptic transmission mechanisms in the level of spinal dorsal horn and its modulation by paclitaxel, a chemotherapeutic drug inducing neuropathic changes. The attention is put especially on the possibility of glial activity participation in paclitaxel side effects. This idea stems from the existing hypothesis of the functional connection between TLR4 and TRPV1 receptor activity. TRPV1 is well known for its participation in chemical, thermal and nociceptive sensory transmission. Minocycline antibiotic is considered as an inhibitor of microglial activation therefore it was used for blocking neuroinflammation. The experimental part is comparing an impact of substances applied to the model of tachyphylaxis used for monitoring of nociceptive transmission changes according to decreasing activity of TRPV1 receptors. Electrophysiological recording of miniature excitatory postsynaptic currents from neurons in the Rexed laminae I. and II. of spinal dorsal horn was used. The results of my measurements show that minocycline is able to suppress acute effects of paclitaxel application in vitro if the spinal slice is incubated...
Interaction of amyloid β with neuronal membrane proteins
Manová, Blanka ; Rudajev, Vladimír (advisor) ; Černá, Barbora (referee)
Amyloid b peptide is cleaved from the amyloid precursor protein by b and γ secretases. According to the amyloid hypothesis i tis the main cause of the early pathogenetic events of Alzheimer's disease (AD) which is the most common neurodegenerative disease in the world without an effective treatment. The main pathogenesis of AD is considered to be the loss of synapses, disruption of neuronal plasticity and neurodegeneration. Amyloid b can bind directly to the membrane or mediate neuronal damage indirectly via toxic inflammatory mediators (e.g., reactive oxygen intermediates, nitric oxide and cytokines) by activating microglia and astrocytes. In addition to interacting with various membrane receptors, Ab can also bind to the cell surface directly, disrupting membrane integrity or forming selective cation channels. This thesis summarizes key interactions with membranes of synapses and mechanisms of amyloid- induced toxicity through receptors.
The role of TRPV1 receptors in nociceptive signalling at spinal cord level
Mrózková, Petra
Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn plays a key role in the development and maintenance of pathological pain states and chronic pain diseases. Important role in this process play Transient receptor potential Vanilloid 1 receptors (TRPV1), present on presynaptic endings of primary afferents in the superficial spinal cord dorsal horn. Changes in TRPV1 activity have significant impact on nociceptive transmission. There are number of processes that influence the function of spinal TRPV1 receptors. This work is focused on the role of protease-activated receptors type 2 (PAR2), C-C motif chemokine ligand 2 (CCL2) and the effect of chemotherapeutic drug paclitaxel in modulation of synaptic nociceptive transmission and activation of TRPV1 receptors. PAR2 receptors belong to a family of four G-protein-coupled receptors activated by proteases. The role of PAR2 receptors in pain perception is closely related to their presence in a population of dorsal root ganglion neurons, where they are also co-expressed with TRPV1. Activation of PAR2 may lead to peripheral and central sensitization. Chemokine CCL2 and its main receptor CCR2 were suggested to be an important factor in the development of neuropathic pain after peripheral nerve injury. In our study we focused on the...
Modulation of synaptic transmission in the development of painful states
Slepička, Jakub ; Paleček, Jiří (advisor) ; Hejnová, Lucie (referee)
My thesis introduces the topic of nociceptive signalisation and processes involved in the formation and spreading of neuropathic pain. This study focuses on the mechanisms of nociceptive synaptic transmission mechanisms in the level of spinal dorsal horn and its modulation by paclitaxel, a chemotherapeutic drug inducing neuropathic changes. The attention is put especially on the possibility of glial activity participation in paclitaxel side effects. This idea stems from the existing hypothesis of the functional connection between TLR4 and TRPV1 receptor activity. TRPV1 is well known for its participation in chemical, thermal and nociceptive sensory transmission. Minocycline antibiotic is considered as an inhibitor of microglial activation therefore it was used for blocking neuroinflammation. The experimental part is comparing an impact of substances applied to the model of tachyphylaxis used for monitoring of nociceptive transmission changes according to decreasing activity of TRPV1 receptors. Electrophysiological recording of miniature excitatory postsynaptic currents from neurons in the Rexed laminae I. and II. of spinal dorsal horn was used. The results of my measurements show that minocycline is able to suppress acute effects of paclitaxel application in vitro if the spinal slice is incubated...
The role of TRPV1 receptors in nociceptive signalling at spinal cord level
Mrózková, Petra
Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn plays a key role in the development and maintenance of pathological pain states and chronic pain diseases. Important role in this process play Transient receptor potential Vanilloid 1 receptors (TRPV1), present on presynaptic endings of primary afferents in the superficial spinal cord dorsal horn. Changes in TRPV1 activity have significant impact on nociceptive transmission. There are number of processes that influence the function of spinal TRPV1 receptors. This work is focused on the role of protease-activated receptors type 2 (PAR2), C-C motif chemokine ligand 2 (CCL2) and the effect of chemotherapeutic drug paclitaxel in modulation of synaptic nociceptive transmission and activation of TRPV1 receptors. PAR2 receptors belong to a family of four G-protein-coupled receptors activated by proteases. The role of PAR2 receptors in pain perception is closely related to their presence in a population of dorsal root ganglion neurons, where they are also co-expressed with TRPV1. Activation of PAR2 may lead to peripheral and central sensitization. Chemokine CCL2 and its main receptor CCR2 were suggested to be an important factor in the development of neuropathic pain after peripheral nerve injury. In our study we focused on the...
The role of TRPV1 receptors in nociceptive signalling at spinal cord level
Mrózková, Petra ; Paleček, Jiří (advisor) ; Novotný, Jiří (referee) ; Krůšek, Jan (referee)
Modulation of nociceptive synaptic transmission in the spinal cord dorsal horn plays a key role in the development and maintenance of pathological pain states and chronic pain diseases. Important role in this process play Transient receptor potential Vanilloid 1 receptors (TRPV1), present on presynaptic endings of primary afferents in the superficial spinal cord dorsal horn. Changes in TRPV1 activity have significant impact on nociceptive transmission. There are number of processes that influence the function of spinal TRPV1 receptors. This work is focused on the role of protease-activated receptors type 2 (PAR2), C-C motif chemokine ligand 2 (CCL2) and the effect of chemotherapeutic drug paclitaxel in modulation of synaptic nociceptive transmission and activation of TRPV1 receptors. PAR2 receptors belong to a family of four G-protein-coupled receptors activated by proteases. The role of PAR2 receptors in pain perception is closely related to their presence in a population of dorsal root ganglion neurons, where they are also co-expressed with TRPV1. Activation of PAR2 may lead to peripheral and central sensitization. Chemokine CCL2 and its main receptor CCR2 were suggested to be an important factor in the development of neuropathic pain after peripheral nerve injury. In our study we focused on the...

National Repository of Grey Literature : 11 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.