National Repository of Grey Literature 8 records found  Search took 0.00 seconds. 
Critical sites determining the resistance phenotype of ABC proteins from the ARE subfamily and the molecular mechanism of their function
Lenart, Jakub
Vga(A) and Msr(A) are resistance proteins belonging to the ARE subfamily of ABC -F proteins. They confer resistance to inhibitors of the peptidyltransferase center. It has been proposed that the mechanism of resistance is based on interaction with a transmembrane partner that forms the functional transporter. Their ribosomal function has been described by cryoelectron microscopy of ribosome complexes with ABCF mutants unable to hydrolyze ATP. However, the exact mechanism of resistance is not yet known. We have produced the mutant proteins combining the four amino acid residues in Vga(A) and Vga(A)LC at the linker tip, and we were the first to describe the effects of substrate specificity of the single mutants. Amino acid positions 212 and 220 are important for resistance to lincosamides and pleuromutilins, respectively, while position 219 is responsible for resistance to streptogramin A. Each amino acid property plays a critical role in conferring antibiotic specificity, as confirmed by the fact that amino acid substitution at position K218T in the Vga(A) protein causes the shift in resistance from streptogramins to lincosamides and pleuromutilins. The mechanism of resistance conferred by Vga(A) is ribosomal protection. This is supported by the fact that the rate of [3H]-lincomycin accumulation in...
Antibiotic resistance conferred by members of ARE subfamily of ABC proteins
Veselá, Ludmila ; Balíková Novotná, Gabriela (advisor) ; Borčin, Kateřina (referee)
The main topic of this thesis is the ARE subfamily of ABC transporters. The importance of the proteins of this subfamily lies in the fact that they confer resistance to several classes of clinically important antibiotics: macrolides, lincosamides, streptogramines and pleuromutilines and they do it in significant pathogens, as for example Staphylococcus aureus. Compared to canonical ABC transporters, the structure of ABC proteins lacks the transmembrane domain (TMD) and so far, there where not even found an integrating transmembrane protein. Due to these facts, the mechanism of resistance conferred by these proteins remains unclear. In the thesis, both suggested hypotheses of the mechanism of how these proteins work are discussed. The first hypothesis presumes the active efflux of antibiotics out of the bacteria. The second hypothesis suggests release of antibiotic from its binding site initiated by ARE proteins, followed by its passive diffusion out of the cell. Keywords: ABC proteins, ARE proteins, resistance, MLS, Vga
The effect of aminoacid variability on the resistance phenotype in ARE subfamily of ABC proteins
Lenart, Jakub ; Balíková Novotná, Gabriela (advisor) ; Fišer, Radovan (referee)
ARE subfamily proteins belonging to ABC transporters confers a different degree of resistance to macrolides, linkosamides and streptogramins antibiotics. Among the most clinically ARE subfamily proteins in staphylococci is Vga(A) protein lead to the award resistance to streptogtramins A. In 2006, discovered the new variant called the Vga(A)LC, which in addition to streptogramins A resistance also confers linkosamides. Vga(A) and Vga(A)LC differ in only 7 amino acids, yet confer different resistance phenotypes. In previous experiments it was found that the central role in determining substrate specificity play a 4 amino acid differences that accumulate in the section of 15 amino acids within the linker connecting the two ABC domains (positions 212, 219, 220 and 226). The combination of amino acids LGAG Vga(A) increases resistance to streptogramins A while present in combination SVTS Vga(A)LC increased resistance to linkosamides. Although in this subfamily includes a large number of resistance proteins, the mechanism of resistance has not yet been established with certainty. The aim was to create a new Vga(A) variants that contain specific combinations of amino acids for Vga(A) and Vga(A)LC protein at positions 212, 219, 220 and 226 and compared their ability to grant resistance to linkosamides. We also...
Critical sites determining the resistance phenotype of ABC proteins from the ARE subfamily and the molecular mechanism of their function
Lenart, Jakub ; Balíková Novotná, Gabriela (advisor) ; Melter, Oto (referee) ; Branny, Pavel (referee)
Vga(A) and Msr(A) are resistance proteins belonging to the ARE subfamily of ABC -F proteins. They confer resistance to inhibitors of the peptidyltransferase center. It has been proposed that the mechanism of resistance is based on interaction with a transmembrane partner that forms the functional transporter. Their ribosomal function has been described by cryoelectron microscopy of ribosome complexes with ABCF mutants unable to hydrolyze ATP. However, the exact mechanism of resistance is not yet known. We have produced the mutant proteins combining the four amino acid residues in Vga(A) and Vga(A)LC at the linker tip, and we were the first to describe the effects of substrate specificity of the single mutants. Amino acid positions 212 and 220 are important for resistance to lincosamides and pleuromutilins, respectively, while position 219 is responsible for resistance to streptogramin A. Each amino acid property plays a critical role in conferring antibiotic specificity, as confirmed by the fact that amino acid substitution at position K218T in the Vga(A) protein causes the shift in resistance from streptogramins to lincosamides and pleuromutilins. The mechanism of resistance conferred by Vga(A) is ribosomal protection. This is supported by the fact that the rate of [3H]-lincomycin accumulation in...
Mechanism of inducible gene expression of resistance protein Vga(A)LC from Staphylococcus haemolyticus.
Novotná, Michaela ; Balíková Novotná, Gabriela (advisor) ; Lišková, Petra (referee)
The staphylococcal protein VgaA belongs to ARE ABCF family, which confers resistance to ribosome binding antibiotics by the target protection mechanism. VgaA confers resistance to lincosamides, streptogramins A and pleuromutilins and thus provides the so-called LSAP resistance phenotype. The expression of resistance genes often reduces fitness in the absence of an antibiotic, therefore the expression of resistance genes is often tightly controlled and triggered only in response to the presence of an antibiotic to which the protein confers resistance. The inducible expression has also been observed for the vgaA gene, nevertheless, its mechanism has not been elucidated. In the diploma thesis, it was shown that the vgaALC gene from Staphylococcus haemolyticus is regulated by ribosome-mediated attenuation. The mechanism is based on the detection of translation inhibitors via a ribosome translating a special regulatory open reading frame (uORF), which is part of an attenuator located in the 5' untranslated region of the mRNA. The vgaALC gene is regulated at the transcriptional level in response to LSAP antibiotics. Antibiotic specificity of induction is affected not only by the nature of the peptide encoded by uORF but also by the antibiotic specificity of the resistance protein. Fluorescence microscopy...
Molecular analysis of resistance gene vga(A)LC identification of key aminoacid residues.
Kroová, Michaela ; Najmanová, Lucie (advisor) ; Vopálenský, Václav (referee)
Protein Vga(A) gives staphylococci resistance to streptogramins A. The recently discovered protein Vga(A)LC differs from Vga(A) only by 7 amino acid residues, but this difference is sufficient for shift of its substrate specificity towards lincosamides. The group of four amino acids in the central part of protein (LGAG in Vga(A) and SVTS in Vga(A)LC) was detected to be crucial for the substrate specificity. In this diploma thesis 5 alternativesets of vga(A)LC gene point mutations were prepared in order to determine the impact of individual amino acids of the aforementioned group on the resistance phenotype. Mutations were prepared in vector pGEM® -T and cloned into shuttle vector pRB374. The prepared constructs were transformed by electroporation into the sensitive strain of Staphylococcus aureus RN4220 and values of minimum inhibitory concentration (MIC) were measured for lincomycin, clindamycin and pristinamycin IIA by the agar dilution method. The transformation was not successful in one of the mutations. Results of setting MIC for the remaining four mutations do not make it possible to specify uniquely the ratio of individual amino acids for determining substrate specificity. Two of the amino acids were found to be important. We anticipate preparation of more mutations.
The effect of aminoacid variability on the resistance phenotype in ARE subfamily of ABC proteins
Lenart, Jakub ; Balíková Novotná, Gabriela (advisor) ; Fišer, Radovan (referee)
ARE subfamily proteins belonging to ABC transporters confers a different degree of resistance to macrolides, linkosamides and streptogramins antibiotics. Among the most clinically ARE subfamily proteins in staphylococci is Vga(A) protein lead to the award resistance to streptogtramins A. In 2006, discovered the new variant called the Vga(A)LC, which in addition to streptogramins A resistance also confers linkosamides. Vga(A) and Vga(A)LC differ in only 7 amino acids, yet confer different resistance phenotypes. In previous experiments it was found that the central role in determining substrate specificity play a 4 amino acid differences that accumulate in the section of 15 amino acids within the linker connecting the two ABC domains (positions 212, 219, 220 and 226). The combination of amino acids LGAG Vga(A) increases resistance to streptogramins A while present in combination SVTS Vga(A)LC increased resistance to linkosamides. Although in this subfamily includes a large number of resistance proteins, the mechanism of resistance has not yet been established with certainty. The aim was to create a new Vga(A) variants that contain specific combinations of amino acids for Vga(A) and Vga(A)LC protein at positions 212, 219, 220 and 226 and compared their ability to grant resistance to linkosamides. We also...
Antibiotic resistance conferred by members of ARE subfamily of ABC proteins
Veselá, Ludmila ; Balíková Novotná, Gabriela (advisor) ; Borčin, Kateřina (referee)
The main topic of this thesis is the ARE subfamily of ABC transporters. The importance of the proteins of this subfamily lies in the fact that they confer resistance to several classes of clinically important antibiotics: macrolides, lincosamides, streptogramines and pleuromutilines and they do it in significant pathogens, as for example Staphylococcus aureus. Compared to canonical ABC transporters, the structure of ABC proteins lacks the transmembrane domain (TMD) and so far, there where not even found an integrating transmembrane protein. Due to these facts, the mechanism of resistance conferred by these proteins remains unclear. In the thesis, both suggested hypotheses of the mechanism of how these proteins work are discussed. The first hypothesis presumes the active efflux of antibiotics out of the bacteria. The second hypothesis suggests release of antibiotic from its binding site initiated by ARE proteins, followed by its passive diffusion out of the cell. Keywords: ABC proteins, ARE proteins, resistance, MLS, Vga

Interested in being notified about new results for this query?
Subscribe to the RSS feed.