National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Using Low Temperature Energy Sources for Ventilation Systems in Residential Buildings
Adam, Pavel ; Košičanová,, Danica (referee) ; Horák, Petr (referee) ; Kabrhel,, Michal (referee) ; Hirš, Jiří (advisor)
The theoretical part deals with three “ventilation systems” (VS). The first VS uses a ground/well temperature potential as a energy source for preheating or cooling fresh ventilation air. It was found out that energy savings can be achieved. In the winter, when the air flow volume was considered 150 m3/hr and ground temperature 4 and 8 ° C, the energy savings are in the range of 227-359 kWh. The electricity increase is 6 kWh of energy. In the summer, the energy savings are 17 to 38 kWh, with the electricity increase 8 kWh of energy. The second VS, i.e. system combining ventilation a solar systems, the calculation was carried out in TRNSYS computer program for two objects - a “low-energy house” (LEH) and “two-floor house” (TFH) - and 6 different solar systems modifications. The energy gains at the LEH for the 3 solar modif. are 49, 59 and 46 kWh per year (yearly consumption for heating is 2622 kWh). The energy gains at the TFH for the 3 solar modif. are 86, 134 and 129 kWh (yearly consumption for the heating is 8988 kWh). The third VS is a residential VS with liquid circuit with two compact “heat exchangers” (HE) at the inlet and outlet air. The results shows (compared to VS without heat recovery) that with the air flow volume 150 m3/h the energy savings in the winter are 1761-3148 kWh (16-hour and 24-hour operation mode). The electr. increase is 173 to 262 kWh of energy. In the exp. research the measuring section for the HE measuring was built. Then the conventional materials HE was measured. Is was found out that the selected HE is suitable for installation of the theoretically proposed systems. Its efficiency is in the range 58 - 82 % (with the air flow volume 570-55 m3/h). Measuring section was optimized and measured various hollow fibre HEs. Their efficiency are in the range 38-63 % (with the air flow volume 300-900 m3/h). Results of CO2 measurements shows that CO2 concentration is close to the value of 5000 ppm. It is much higher than max. allowed value 1200
Solar heat for residential heat supply
Siuda, Radim ; Škvařil, Jan (referee) ; Pospíšil, Jiří (advisor)
The subject of this bachelor thesis is usage of solar energy for water heating. The first part is dedicated to a summary of current theoretical knowledge of passive and active solar energy. The second part deals with the design of solar system for family house. This will be implemented by bivalent system to provide the necessary amount of hot water throughout the year. At the very end of this work, economic evaluation is done.
Using Low Temperature Energy Sources for Ventilation Systems in Residential Buildings
Adam, Pavel ; Košičanová,, Danica (referee) ; Horák, Petr (referee) ; Kabrhel,, Michal (referee) ; Hirš, Jiří (advisor)
The theoretical part deals with three “ventilation systems” (VS). The first VS uses a ground/well temperature potential as a energy source for preheating or cooling fresh ventilation air. It was found out that energy savings can be achieved. In the winter, when the air flow volume was considered 150 m3/hr and ground temperature 4 and 8 ° C, the energy savings are in the range of 227-359 kWh. The electricity increase is 6 kWh of energy. In the summer, the energy savings are 17 to 38 kWh, with the electricity increase 8 kWh of energy. The second VS, i.e. system combining ventilation a solar systems, the calculation was carried out in TRNSYS computer program for two objects - a “low-energy house” (LEH) and “two-floor house” (TFH) - and 6 different solar systems modifications. The energy gains at the LEH for the 3 solar modif. are 49, 59 and 46 kWh per year (yearly consumption for heating is 2622 kWh). The energy gains at the TFH for the 3 solar modif. are 86, 134 and 129 kWh (yearly consumption for the heating is 8988 kWh). The third VS is a residential VS with liquid circuit with two compact “heat exchangers” (HE) at the inlet and outlet air. The results shows (compared to VS without heat recovery) that with the air flow volume 150 m3/h the energy savings in the winter are 1761-3148 kWh (16-hour and 24-hour operation mode). The electr. increase is 173 to 262 kWh of energy. In the exp. research the measuring section for the HE measuring was built. Then the conventional materials HE was measured. Is was found out that the selected HE is suitable for installation of the theoretically proposed systems. Its efficiency is in the range 58 - 82 % (with the air flow volume 570-55 m3/h). Measuring section was optimized and measured various hollow fibre HEs. Their efficiency are in the range 38-63 % (with the air flow volume 300-900 m3/h). Results of CO2 measurements shows that CO2 concentration is close to the value of 5000 ppm. It is much higher than max. allowed value 1200
Solar heat for residential heat supply
Siuda, Radim ; Škvařil, Jan (referee) ; Pospíšil, Jiří (advisor)
The subject of this bachelor thesis is usage of solar energy for water heating. The first part is dedicated to a summary of current theoretical knowledge of passive and active solar energy. The second part deals with the design of solar system for family house. This will be implemented by bivalent system to provide the necessary amount of hot water throughout the year. At the very end of this work, economic evaluation is done.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.