National Repository of Grey Literature 6 records found  Search took 0.01 seconds. 
Electronically Reconfigurable Frequency Filters
Gajdoš, Adam
This article presents designed reconnection-less filter with electronically reconfigurable type and parameters of its transfer function. The Filter uses VDCC (Voltage Differencing Current Conveyor) and CA (Current Amplifier) as active elements. This paper includes also results of computer simulations of designed circuit.
Electronically reconfigurable frequency filters
Gajdoš, Adam ; Langhammer, Lukáš (referee) ; Jeřábek, Jan (advisor)
The aim of the thesis was design of reconnection-less and electronically reconfigurable filters of SISO type with non-traditional active elements. Adjustability of bandwidth or quality factor is also required. First part of the thesis deals with theoretical analysis of filters, their operation modes and design of frequency filters using Signal-flow graph method aswell. Last but not least, electronical reconfiguration of transfer function and parasitic analysis was discussed. Another part describes active elements used in the practical part of thesis. Behaviors and design of active elements using existing circuits (e.g. UCC,EL2082) are described and their transformation into the Signal-flow graph form too. In the practical part five reconnection-less and reconfigurable filters of SISO type was designed using SNAP program. Simulations were done using Orcad program with ideal and real simulation models of active elements. Last part deals with filter design in EAGLE and experimental measurement.
Design of electronically reconfigurable filtering structures with modern active elements
Prát, Marek ; Kubánek, David (referee) ; Langhammer, Lukáš (advisor)
The aim of master's thesis was design of electronically reconfigurable filters. Adjustability of pole frequency or quality factor is possible. First part of thesis deals with theoretical analysis of filters, their operation modes, design of frequency filters using Signal-Flow graph method and parasitic analysis. The next part describes active elements used in thesis. In a third part, three reconfigurable filters are described and designed and their simulations and parasitic analysis are made. Last part deals with filter design in EAGLE and experimental measurement.
Electronically Reconfigurable Frequency Filters
Gajdoš, Adam
This article presents designed reconnection-less filter with electronically reconfigurable type and parameters of its transfer function. The Filter uses VDCC (Voltage Differencing Current Conveyor) and CA (Current Amplifier) as active elements. This paper includes also results of computer simulations of designed circuit.
Design of electronically reconfigurable filtering structures with modern active elements
Prát, Marek ; Kubánek, David (referee) ; Langhammer, Lukáš (advisor)
The aim of master's thesis was design of electronically reconfigurable filters. Adjustability of pole frequency or quality factor is possible. First part of thesis deals with theoretical analysis of filters, their operation modes, design of frequency filters using Signal-Flow graph method and parasitic analysis. The next part describes active elements used in thesis. In a third part, three reconfigurable filters are described and designed and their simulations and parasitic analysis are made. Last part deals with filter design in EAGLE and experimental measurement.
Electronically reconfigurable frequency filters
Gajdoš, Adam ; Langhammer, Lukáš (referee) ; Jeřábek, Jan (advisor)
The aim of the thesis was design of reconnection-less and electronically reconfigurable filters of SISO type with non-traditional active elements. Adjustability of bandwidth or quality factor is also required. First part of the thesis deals with theoretical analysis of filters, their operation modes and design of frequency filters using Signal-flow graph method aswell. Last but not least, electronical reconfiguration of transfer function and parasitic analysis was discussed. Another part describes active elements used in the practical part of thesis. Behaviors and design of active elements using existing circuits (e.g. UCC,EL2082) are described and their transformation into the Signal-flow graph form too. In the practical part five reconnection-less and reconfigurable filters of SISO type was designed using SNAP program. Simulations were done using Orcad program with ideal and real simulation models of active elements. Last part deals with filter design in EAGLE and experimental measurement.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.