National Repository of Grey Literature 14 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
SPM Methods Based On The Quartz Resonator Probes
Wertheimer, Pavel ; Sobotík, Pavel (referee) ; Číp, Ondřej (referee) ; Šikola, Tomáš (advisor)
The thesis is focused on development of scanning probe microscope systems, especially development and implementation of quartz resonator probes. The quartz resonator probes, compared to the standard silicon cantilevers, have several advantages. It is in particular their mechanical properties and possibility of direct electrical readout of the deflection signal. Due to the fact, the probes are easy to implement even into more complex SPM systems. The thesis deals with development of universal and open SPM control system electronics. The electronics consist of the commercial SPM control and oscillation units, the development of the other electronic parts (such as the high voltage amplifier and the preamplifier units) is described in the thesis. Further, the thesis reports on development of the qPlus UHV LT SPM microscope system that was carried out at Universität Hamburg. Part of it was development of the qPlus preamplifier able to operate at liquid helium temperature. The third topic of the thesis is the implementation of qPlus technology into the UHV VT SPM microscope suitable to operate in situ with a scanning electron microscope. The qPlus sensors and the universal UHV preamplifier were designed and manufactured. Test measurements were conducted on all of the developed systems.
Mechanical excitation of self sensing SPM probes
Novotný, Ondřej ; Piastek, Jakub (referee) ; Pavera, Michal (advisor)
This bachelor thesis deals with the development of the SPM microscope probe holder which is designed for mechanical excitation of the probes. The first part of the thesis focuses on the description of physical theory, such as the principle of atomic force microscopy, the function of piezoceramics and the description of used quartz tunning fork based probes. The second part describes the gradual development and design of the new probe holder. Testing of the designed probe holder and comparison of mechanical and electric excitation is depicted at the end of this work. The designed probe holder was manufactured, the assembly procedure was described, and the drawings of the individual parts were created.
Local electrical conductivity measurements in AFM tapping mode
Dao, Radek ; Konečný, Martin (referee) ; Pavera, Michal (advisor)
This bachelor thesis is concerned about the development of a probe for local electrical conductivity measurements in tapping mode Atomic Force Microscopy. The teoretical part gives a short overview of Scanning Probe Microscopy techniques, with the focus being on Conductivity Atomic Force Microscopy. Furthermore, the measuring regime in which the probe operates is described here, as well as the basic component of the probe, the quartz tuning fork. The experimental part follows the iterative development process, and contains a chapter dedicated to making of very sharp tips. The final chapters describe the preparation of test samples, which were used to prove the functionality of the probe and the measurement of local electrical conductivity itself.
Quantum turbulence in superfluid helium studied by particle tracking velocimetry visualization technique
Duda, Daniel ; Skrbek, Ladislav (advisor) ; Chára, Zdeněk (referee) ; Skyba, Peter (referee)
❚✐t❧❡✿ ◗✉❛♥t✉♠ t✉r❜✉❧❡♥❝❡ ✐♥ s✉♣❡r✢✉✐❞ ❤❡❧✐✉♠ st✉❞✐❡❞ ❜② ♣❛rt✐❝❧❡ tr❛❝❦✐♥❣ ✈❡❧♦❝✐♠❡tr② ✈✐s✉❛❧✐③❛t✐♦♥ t❡❝❤♥✐q✉❡ ❆✉t❤♦r✿ ❘◆❉r✳ ❉❛♥✐❡❧ ❉✉❞❛ ❉❡♣❛rt♠❡♥t✿ ❉❡♣❛rt♠❡♥t ♦❢ ▲♦✇ ❚❡♠♣❡r❛t✉r❡ P❤②s✐❝s ❙✉♣❡r✈✐s♦r✿ ♣r♦❢✳ ❘◆❉r✳ ▲❛❞✐s❧❛✈ ❙❦r❜❡❦✱ ❉r❙❝✳ ❆❜str❛❝t✿ ❚❤❡ P❛rt✐❝❧❡ ❚r❛❝❦✐♥❣ ❱❡❧♦❝✐♠❡tr② ✈✐s✉❛❧✐③❛t✐♦♥ t❡❝❤♥✐q✉❡ ✉s✐♥❣ ♠✐❝✲ r♦♠❡t❡r s✐③❡ s♦❧✐❞ ❞❡✉t❡r✐✉♠ ♣❛rt✐❝❧❡s ❛s tr❛❝❡rs ❤❛s ❜❡❡♥ ❛♣♣❧✐❡❞ t♦ st✉❞② ♦s❝✐❧✲ ❧❛t♦r② ✢♦✇s ♦❢ ❍❡ ■■✱ ✇❤✐❝❤ ✐s ❛ q✉❛♥t✉♠ ✢✉✐❞ ✇✐t❤ q✉❛♥t✐③❡❞ ✈♦rt✐❝✐t②✱ ❛s ✇❡❧❧ ❛s ✢♦✇s ♦❢ ❍❡ ■✱ ✇❤✐❝❤ ✐s ❛ ❝❧❛ss✐❝❛❧ ✈✐s❝♦✉s ❧✐q✉✐❞✱ ❢♦❝✉s✐♥❣ ♦♥ t❤❡ s✐♠✐❧❛r✐t✐❡s ❛♥❞ ❞✐✛❡r❡♥❝❡s ❜❡t✇❡❡♥ t❤❡ q✉❛♥t✉♠ ❛♥❞ ❝❧❛ss✐❝❛❧ ✢♦✇s✳ ❚❤r❡❡ ❡①♣❡r✐♠❡♥ts ❛r❡ ❞❡s❝r✐❜❡❞✿ t❤❡ ✢♦✇ ♣❛st ❛ ❧❛r❣❡✲❛♠♣❧✐t✉❞❡ ❧♦✇✲❢r❡q✉❡♥❝② ♦s❝✐❧❧❛t✐♥❣ ♦❜st❛❝❧❡ ✐♥ t❤❡ ❢♦r♠ ♦❢ ❛ ♣r✐s♠❀ t❤❡ st❡❛❞② str❡❛♠✐♥❣ ✢♦✇ ❞✉❡ t♦ ❛ s♠❛❧❧✲❛♠♣❧✐t✉❞❡ ❧❛r❣❡✲ ❢r❡q✉❡♥❝② ♦s❝✐❧❧❛t✐♥❣ q✉❛rt③ t✉♥✐♥❣ ❢♦r❦ ✲ ❛ ✇✐❞❡❧② ✉s❡❞ t♦♦❧ t♦ st✉❞② q✉❛♥t✉♠ t✉r❜✉❧❡♥❝❡❀ ❛♥❞ t❤❡ ♣r♦❞✉❝t✐♦♥ ♦❢ ❝❛✈✐t❛t✐♦♥ ✐♥ t❤❡ ✈✐❝✐♥✐t② ♦❢ ❛ ❢❛st✲♦s❝✐❧❧❛t✐♥❣ t✉♥✐♥❣ ❢♦r❦✳ ❚❤❡ ♠❛✐♥ ♦✉t❝♦♠❡ ✐s t❤❡ ♦❜s❡r✈❛t✐♦♥ t❤❛t t❤❡s❡ ✢♦✇s ❛r❡ s✐♠✐❧❛r ✐♥ ❍❡ ■ ❛♥❞ ✐♥ ❍❡ ■■ ❛t ❧❛r❣❡ ❧❡♥❣t❤✲s❝❛❧❡s✱ ✇❤❡r❡❛s ❛t s♠❛❧❧ s❝❛❧❡s✱ t❤❡② ❡①❤✐❜✐t t♦t❛❧❧② ❞✐✛❡r❡♥t st❛t✐st✐❝❛❧ ♣r♦♣❡rt✐❡s✳ ▼♦r❡♦✈❡r✱ ✐♥ ❍❡ ■■✱ t❤❡s❡ s♠❛❧❧ s❝❛❧❡ st❛✲ t✐st✐❝❛❧ ♣r♦♣❡rt✐❡s ❛r❡ ✉♥✐✈❡rs❛❧ ✐♥ t❤❛t t❤❡② ❞♦ ♥♦t ❞❡♣❡♥❞ ♦♥ t❤❡ t②♣❡ ♦❢ t❤❡ ✐♠♣♦s❡❞ ♠❡❛♥ ✢♦✇ ♦❢ t❤❡ s✉♣❡r✢✉✐❞ ❛♥❞ ♥♦r♠❛❧...
Mechanical excitation of self sensing SPM probes
Novotný, Ondřej ; Piastek, Jakub (referee) ; Pavera, Michal (advisor)
This bachelor thesis deals with the development of the SPM microscope probe holder which is designed for mechanical excitation of the probes. The first part of the thesis focuses on the description of physical theory, such as the principle of atomic force microscopy, the function of piezoceramics and the description of used quartz tunning fork based probes. The second part describes the gradual development and design of the new probe holder. Testing of the designed probe holder and comparison of mechanical and electric excitation is depicted at the end of this work. The designed probe holder was manufactured, the assembly procedure was described, and the drawings of the individual parts were created.
Local electrical conductivity measurements in AFM tapping mode
Dao, Radek ; Konečný, Martin (referee) ; Pavera, Michal (advisor)
This bachelor thesis is concerned about the development of a probe for local electrical conductivity measurements in tapping mode Atomic Force Microscopy. The teoretical part gives a short overview of Scanning Probe Microscopy techniques, with the focus being on Conductivity Atomic Force Microscopy. Furthermore, the measuring regime in which the probe operates is described here, as well as the basic component of the probe, the quartz tuning fork. The experimental part follows the iterative development process, and contains a chapter dedicated to making of very sharp tips. The final chapters describe the preparation of test samples, which were used to prove the functionality of the probe and the measurement of local electrical conductivity itself.
Quantum turbulence in superfluid helium studied by particle tracking velocimetry visualization technique
Duda, Daniel ; Skrbek, Ladislav (advisor) ; Chára, Zdeněk (referee) ; Skyba, Peter (referee)
❚✐t❧❡✿ ◗✉❛♥t✉♠ t✉r❜✉❧❡♥❝❡ ✐♥ s✉♣❡r✢✉✐❞ ❤❡❧✐✉♠ st✉❞✐❡❞ ❜② ♣❛rt✐❝❧❡ tr❛❝❦✐♥❣ ✈❡❧♦❝✐♠❡tr② ✈✐s✉❛❧✐③❛t✐♦♥ t❡❝❤♥✐q✉❡ ❆✉t❤♦r✿ ❘◆❉r✳ ❉❛♥✐❡❧ ❉✉❞❛ ❉❡♣❛rt♠❡♥t✿ ❉❡♣❛rt♠❡♥t ♦❢ ▲♦✇ ❚❡♠♣❡r❛t✉r❡ P❤②s✐❝s ❙✉♣❡r✈✐s♦r✿ ♣r♦❢✳ ❘◆❉r✳ ▲❛❞✐s❧❛✈ ❙❦r❜❡❦✱ ❉r❙❝✳ ❆❜str❛❝t✿ ❚❤❡ P❛rt✐❝❧❡ ❚r❛❝❦✐♥❣ ❱❡❧♦❝✐♠❡tr② ✈✐s✉❛❧✐③❛t✐♦♥ t❡❝❤♥✐q✉❡ ✉s✐♥❣ ♠✐❝✲ r♦♠❡t❡r s✐③❡ s♦❧✐❞ ❞❡✉t❡r✐✉♠ ♣❛rt✐❝❧❡s ❛s tr❛❝❡rs ❤❛s ❜❡❡♥ ❛♣♣❧✐❡❞ t♦ st✉❞② ♦s❝✐❧✲ ❧❛t♦r② ✢♦✇s ♦❢ ❍❡ ■■✱ ✇❤✐❝❤ ✐s ❛ q✉❛♥t✉♠ ✢✉✐❞ ✇✐t❤ q✉❛♥t✐③❡❞ ✈♦rt✐❝✐t②✱ ❛s ✇❡❧❧ ❛s ✢♦✇s ♦❢ ❍❡ ■✱ ✇❤✐❝❤ ✐s ❛ ❝❧❛ss✐❝❛❧ ✈✐s❝♦✉s ❧✐q✉✐❞✱ ❢♦❝✉s✐♥❣ ♦♥ t❤❡ s✐♠✐❧❛r✐t✐❡s ❛♥❞ ❞✐✛❡r❡♥❝❡s ❜❡t✇❡❡♥ t❤❡ q✉❛♥t✉♠ ❛♥❞ ❝❧❛ss✐❝❛❧ ✢♦✇s✳ ❚❤r❡❡ ❡①♣❡r✐♠❡♥ts ❛r❡ ❞❡s❝r✐❜❡❞✿ t❤❡ ✢♦✇ ♣❛st ❛ ❧❛r❣❡✲❛♠♣❧✐t✉❞❡ ❧♦✇✲❢r❡q✉❡♥❝② ♦s❝✐❧❧❛t✐♥❣ ♦❜st❛❝❧❡ ✐♥ t❤❡ ❢♦r♠ ♦❢ ❛ ♣r✐s♠❀ t❤❡ st❡❛❞② str❡❛♠✐♥❣ ✢♦✇ ❞✉❡ t♦ ❛ s♠❛❧❧✲❛♠♣❧✐t✉❞❡ ❧❛r❣❡✲ ❢r❡q✉❡♥❝② ♦s❝✐❧❧❛t✐♥❣ q✉❛rt③ t✉♥✐♥❣ ❢♦r❦ ✲ ❛ ✇✐❞❡❧② ✉s❡❞ t♦♦❧ t♦ st✉❞② q✉❛♥t✉♠ t✉r❜✉❧❡♥❝❡❀ ❛♥❞ t❤❡ ♣r♦❞✉❝t✐♦♥ ♦❢ ❝❛✈✐t❛t✐♦♥ ✐♥ t❤❡ ✈✐❝✐♥✐t② ♦❢ ❛ ❢❛st✲♦s❝✐❧❧❛t✐♥❣ t✉♥✐♥❣ ❢♦r❦✳ ❚❤❡ ♠❛✐♥ ♦✉t❝♦♠❡ ✐s t❤❡ ♦❜s❡r✈❛t✐♦♥ t❤❛t t❤❡s❡ ✢♦✇s ❛r❡ s✐♠✐❧❛r ✐♥ ❍❡ ■ ❛♥❞ ✐♥ ❍❡ ■■ ❛t ❧❛r❣❡ ❧❡♥❣t❤✲s❝❛❧❡s✱ ✇❤❡r❡❛s ❛t s♠❛❧❧ s❝❛❧❡s✱ t❤❡② ❡①❤✐❜✐t t♦t❛❧❧② ❞✐✛❡r❡♥t st❛t✐st✐❝❛❧ ♣r♦♣❡rt✐❡s✳ ▼♦r❡♦✈❡r✱ ✐♥ ❍❡ ■■✱ t❤❡s❡ s♠❛❧❧ s❝❛❧❡ st❛✲ t✐st✐❝❛❧ ♣r♦♣❡rt✐❡s ❛r❡ ✉♥✐✈❡rs❛❧ ✐♥ t❤❛t t❤❡② ❞♦ ♥♦t ❞❡♣❡♥❞ ♦♥ t❤❡ t②♣❡ ♦❢ t❤❡ ✐♠♣♦s❡❞ ♠❡❛♥ ✢♦✇ ♦❢ t❤❡ s✉♣❡r✢✉✐❞ ❛♥❞ ♥♦r♠❛❧...
SPM Methods Based On The Quartz Resonator Probes
Wertheimer, Pavel ; Sobotík, Pavel (referee) ; Číp, Ondřej (referee) ; Šikola, Tomáš (advisor)
The thesis is focused on development of scanning probe microscope systems, especially development and implementation of quartz resonator probes. The quartz resonator probes, compared to the standard silicon cantilevers, have several advantages. It is in particular their mechanical properties and possibility of direct electrical readout of the deflection signal. Due to the fact, the probes are easy to implement even into more complex SPM systems. The thesis deals with development of universal and open SPM control system electronics. The electronics consist of the commercial SPM control and oscillation units, the development of the other electronic parts (such as the high voltage amplifier and the preamplifier units) is described in the thesis. Further, the thesis reports on development of the qPlus UHV LT SPM microscope system that was carried out at Universität Hamburg. Part of it was development of the qPlus preamplifier able to operate at liquid helium temperature. The third topic of the thesis is the implementation of qPlus technology into the UHV VT SPM microscope suitable to operate in situ with a scanning electron microscope. The qPlus sensors and the universal UHV preamplifier were designed and manufactured. Test measurements were conducted on all of the developed systems.

National Repository of Grey Literature : 14 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.