National Repository of Grey Literature 12 records found  1 - 10next  jump to record: Search took 0.01 seconds. 
Characterization of microwave plasma jet generated in argon-nitrogen mixtures
Truchlá, Darina ; Mazánková, Věra (referee) ; Krčma, František (advisor)
This thesis is concerned with influence of nitrogen admixture to non-thermal microwave plasma jet generated in argon flow at atmospheric pressure. Non-thermal plasma can be used in more biomedical applications such cancer treatment, blood coagulation, sterilization etc. It is necessary to know the changes of plasma composition and its parameters in dependence nitrogen concentration to avoid potentional damages of the treated tissue. Plasma jet was characterized by optical emission spectroscopy along its axis. Electron, vibrational and rotational temperatures were calculated from intensities of the selected spectral lines and bands emitted by particles generated in plasma. The results show increase of the nitric oxide concentration followed by the increase UVC radiation. Temperature of the neutral gas increase too, but not so much and thus jet with nitrogen addition can be still used for the treatment of thermosensitive materials such as human tissue. Study of the sterilization effect of microwave plasma generated in argon-nitrogen mixtures is still under progress. Some of the results obtained during this thesis were included in the paper submitted into Journal of Physics D: Applied Physics.
Optical emission spectoscopy of the nitrogen-argon post-discharge
Žáková, Marie ; Kudrle, Vít (referee) ; Krčma, František (advisor)
The study of plasmas generated in pure nitrogen and their afterglows are a subject of many hundreds works bringing a lot of information about the kinetic processes and energy transfer reactions. The effect of nitrogen pink afterglow has a specific position among the other kinds of discharges and post-discharges. The post-discharge, and especially the pink afterglow, is extremely sensitive to the presence of various impurities and experimental conditions (total gas pressure in a discharge tube, temperature, etc.) because of their significant influence on all kinetic processes. That is the reason, why it is so important to study this processes. The DC flowing afterglow (generated using the hollow molybdenum electrodes in the distance of 12 cm, power ± 290 W) was used for the experimental part of this work. The discharge was created in Pyrex discharge tube at different concentration ratio of nitrogen and argon. The total gas presure was in range from 500 Pa to 5000 Pa. The emission spectra of post-discharge were recorded by TRIAX 550 spectrometer with CCD detector in the range of 320-780 nm. The vibrational populations at individual vibrational levels were calculated using the emission bands of the first (N2 (B 3g) N2 (A 3u+)) and the second (N2 (C 3u) N2 (B 3g)) positive and the first negative (N2+ (B 2u+) N2+ (X 2g+) nitrogen spectral systems. The dependencies of intensity on decay time and relative vibrational populations on argon concentration and pressure were obtained. The pink afterglow was very sharp in pure nitrogen at low pressure. With the increasing total pressure it was shifted to the later decay times and it was visible for longer time, too. The same effect was observed with the increase of argon concentration in the gas mixture. At the highest argon concentrations, especially at lower pressure, the effect of pink afterglow dissapeared. The knowledge of these processes can give the solution of all kinetic reactions in plasma and this can be used in plasma chemistry and for development of new technologies. This will be a subject of further intensive studies.
Measure of atomic nitrogen concentration in the nitrogen post-discharge
Josiek, Stanislav ; doc.Mgr.Pavel Slavíček, Ph.D. (referee) ; Mazánková, Věra (advisor)
Clean post-discharge nitrogen plasma and nitrogen plasma with different traces have been focus of scientists for more than 50 years and there were published many articles on theme active discharge, post-discharge, processes and reactions. It is possible to create kinetic models from all these information and then calculate concentrations of elements in atomic form. This diploma thesis is focused on measuring of concentration of atomic nitrogen for different conditions (decay time, pressure, admixture). The titration method by nitric oxide in post-discharge was used to determinate of concentration of atomic nitrogen. All experimental results were obtained by the optical emission spectroscopy. Optical emission spectra were taken in the range of 300-600 nm. DC discharge was created in a quartz tube in a flowing regime. The flowing regime was chosen for this experiment because of better time resolution of decay time, order in milliseconds. Decay time was in the range of 16 – 82 ms for individual experiments. Nitrogen flow was 400 mln/min. Nitrogen oxide flow was in the range of 0-10 mln/min and it was added at the selected post-discharge time. Trace of methane was 0,006 % of the whole volume. Total gas pressure was set on values from 500 to 4000 Pa. The output of discharge was set on constant value of current 150 mA and the output has changed according to the amount of pressure. Nitrogen first positive, second positive and first negative spectral systems, NO spectral system and NO2* spectral system were recognized in all measured spectra. Absolute concentration of atomic nitrogen was specified by the method of titration of NO. Traces of methane increase dissociation of molecular nitrogen and therefore increase the concentration of atomic nitrogen. This thesis brings new results into longtime research of moon Titan and new results into study of processes in nitrogen-methane plasma.
Study of post-discharge kinetic processes by titration methods
Josiek, Stanislav ; Kozáková, Zdenka (referee) ; Mazánková, Věra (advisor)
Many experimental and theoretical works on plasma post-discharges have been published during the last more than fifty years. A part of these works was focused in details on nitrogen discharges and post-discharges and kinetic processes in it. The aim of the presented bachelor`s thesis was to study kinetic processes in post-discharge in pure nitrogen and nitrogen contained methane traces. Atomic nitrogen concentration at different methane concentrations was measured by the nitrogen monoxide titration into the post-discharge. All experimental results were obtained by the optical emission spectroscopy. Optical emission spectra were taken in the range of 300-600 nm. DC discharge was created in a quartz tube in a flowing regime. The flowing regime was chosen for this experiment because of better time resolution of the post-discharge. Nitrogen flow was 400 mln/min. Nitrogen oxide flow was in the range of 0-10 mln/min and it was added at the selected post-discharge time. Experiments were carried out for pure nitrogen and for four different methane concentrations – 0.006, 0.013, 0.019 and 0.025 %. Total gas pressure of 1000 Pa, discharge current of 150 mA and voltage of 1110 V were constant during all these experiments. Nitrogen first positive, second positive and first negative spectral systems, NO spectral system and NO2* spectral system were recognized in all measured spectra. The atomic nitrogen concentration was determined using NO and NO2* intensities, and it was increased by the increase of methane concentration. On the other hand, the nitrogen molecular ion emission was strongly quenched even at very low concentration of methane. From this point of view, this thesis is innovative and brings new results into the worldwide research.
Study of molecular oxygen titration into nitrogen post-discharge
Řehulková, Blanka ; Mazánková, Věra (referee) ; Krčma, František (advisor)
A huge number of experiments were carried out in the field of nitrogen post-discharges during the last 50 or 60 years and they were supported by many published theoretical works. Some papers were focused also on the nitrogen active discharge, post-discharge itself, or they focused mainly on the kinetic processes running during the post-discharge period. This experimental work shows how oxygen titration into post-discharge will influence nitrogen flowing post-discharge. Experimental data were obtained by optical emission spectrometry, Spectra were measured in the range 300 - 700 nm at laboratory temperature of 300K. Discharge current was kept constant at the value of 120 mA relating to the total discharge power of 145 W. Pressure was kept constant, too, at the value of 1000 Pa. The nitrogen of 99.9999 % purity (further purified by Oxiclear column) flow was adjusted at 0.8 l/min. Flow of oxygen (99.95 % purity) through he titration capillary introduced to post-discharge from down stream direction, was kept at 4 ml/min. Both gas flows were controlled by mass flow controllers. The optical emission spectrometer Jobin Yvon TRIAX 550 with 300 gr/mm grating equipped by liquid nitrogen cooled CCD detector was used for the spectra acquisition. The integration time of 1 s was used at all experiments. The position of titration tube end introduced into post discharge from the down stream side was set from 5 to 25 cm with respect to the end of the active discharge; the step of 1 cm was used. The optical emission spectra were measured at positions from 3 to 29 cm with respect to the active discharge end. The following nitrogen spectral systems were identified in the spectra: 1st positive, 1st negative and 2nd positive. Besides them, some bands of NO-beta system were found. The intensity profiles along the post discharge were obtained for selected vibrational spectral bands of these spectral systems and changes in the vibrational distributions of upper electronic states of these spectral systems were determined.
Study of nitrogen post-discharge by mercury vapor titration
Teslíková, Ivana ; Brablec, Antonín (referee) ; Mazánková, Věra (advisor)
The aim of this master thesis is a study of nitrogen post-discharge by mercury vapours titration. The nitrogen post-discharge is investigated for many years theoretically as well as for a practical use. The object of this master thesis is a study of kinetic processes ongoing at titrations of mercury vapours during the nitrogen post-discharge at different pressures and applied powers. All experimental data were obtained from an optical emission spectroscopy of nitrogen post-discharge. DC discharge in flowing regime was chosen for measurements. The first part of experiments was carried out at the constant discharge current (100 mA), voltage (1300 V) and wall temperature (300 K). The total gas pressure was varied in range of 500-3000 Pa at nitrogen flow in range of 0.12-0.68 l/min. Nitrogen flow values were arranged to obtain constant nitrogen flow velocity for all gas pressures. The second set of experiments studied power dependencies. The current was varied in the range of 50-200 mA for constant voltage 1300 V. The total gas pressure in this case was 1000 Pa. Mercury vapours were introduced into the system by titration tube at different post-discharge time. The nitrogen pink afterglow effect was well visible at all experimental conditions. This effect corresponds to the maximum intensity of light emission, which expresses as considerable growth of characteristic pink radiation in the post-discharge time. Optical emission spectra of post-discharge were taken in the range of 320-780 nm. Besides three nitrogen spectral systems (first and second positive and first negative), the mercury line at 254 nm was recorded in the second order spectrum at 508 nm under these conditions if mercury was added. This spectral line is excited under post-discharge conditions by collisionally induced resonance energy transfer from nitrogen highly vibrationally excited ground state metastables and it opens an unique technique for their monitoring. The dependence of relative intensities on decay time for mercury spectral line and selected nitrogen spectral systems at different titration positions were measured. The relative intensities of nitrogen bands decrease with increasing of mercury line relative intensity for all total gas pressures. The pink afterglow phenomenon shifts to the later decay times with the increasing of total gas pressure. In the case of experiments at different power, it can be seen that with decreasing power mercury spectral line intensity decreases in post-discharge time. The first detailed tests of the unique detection for highly excited of nitrogen metastables were completed. However this master thesis is concentrated on the basic research which supports better indication of kinetic processes and reactions leading to transformation of excitation energy, this new knowledge should be applied in future also in technologies based on the long-lived metastable induced reactions.
Characterization of microwave plasma jet generated in argon-nitrogen mixtures
Truchlá, Darina ; Mazánková, Věra (referee) ; Krčma, František (advisor)
This thesis is concerned with influence of nitrogen admixture to non-thermal microwave plasma jet generated in argon flow at atmospheric pressure. Non-thermal plasma can be used in more biomedical applications such cancer treatment, blood coagulation, sterilization etc. It is necessary to know the changes of plasma composition and its parameters in dependence nitrogen concentration to avoid potentional damages of the treated tissue. Plasma jet was characterized by optical emission spectroscopy along its axis. Electron, vibrational and rotational temperatures were calculated from intensities of the selected spectral lines and bands emitted by particles generated in plasma. The results show increase of the nitric oxide concentration followed by the increase UVC radiation. Temperature of the neutral gas increase too, but not so much and thus jet with nitrogen addition can be still used for the treatment of thermosensitive materials such as human tissue. Study of the sterilization effect of microwave plasma generated in argon-nitrogen mixtures is still under progress. Some of the results obtained during this thesis were included in the paper submitted into Journal of Physics D: Applied Physics.
Study of molecular oxygen titration into nitrogen post-discharge
Řehulková, Blanka ; Mazánková, Věra (referee) ; Krčma, František (advisor)
A huge number of experiments were carried out in the field of nitrogen post-discharges during the last 50 or 60 years and they were supported by many published theoretical works. Some papers were focused also on the nitrogen active discharge, post-discharge itself, or they focused mainly on the kinetic processes running during the post-discharge period. This experimental work shows how oxygen titration into post-discharge will influence nitrogen flowing post-discharge. Experimental data were obtained by optical emission spectrometry, Spectra were measured in the range 300 - 700 nm at laboratory temperature of 300K. Discharge current was kept constant at the value of 120 mA relating to the total discharge power of 145 W. Pressure was kept constant, too, at the value of 1000 Pa. The nitrogen of 99.9999 % purity (further purified by Oxiclear column) flow was adjusted at 0.8 l/min. Flow of oxygen (99.95 % purity) through he titration capillary introduced to post-discharge from down stream direction, was kept at 4 ml/min. Both gas flows were controlled by mass flow controllers. The optical emission spectrometer Jobin Yvon TRIAX 550 with 300 gr/mm grating equipped by liquid nitrogen cooled CCD detector was used for the spectra acquisition. The integration time of 1 s was used at all experiments. The position of titration tube end introduced into post discharge from the down stream side was set from 5 to 25 cm with respect to the end of the active discharge; the step of 1 cm was used. The optical emission spectra were measured at positions from 3 to 29 cm with respect to the active discharge end. The following nitrogen spectral systems were identified in the spectra: 1st positive, 1st negative and 2nd positive. Besides them, some bands of NO-beta system were found. The intensity profiles along the post discharge were obtained for selected vibrational spectral bands of these spectral systems and changes in the vibrational distributions of upper electronic states of these spectral systems were determined.
Measure of atomic nitrogen concentration in the nitrogen post-discharge
Josiek, Stanislav ; doc.Mgr.Pavel Slavíček, Ph.D. (referee) ; Mazánková, Věra (advisor)
Clean post-discharge nitrogen plasma and nitrogen plasma with different traces have been focus of scientists for more than 50 years and there were published many articles on theme active discharge, post-discharge, processes and reactions. It is possible to create kinetic models from all these information and then calculate concentrations of elements in atomic form. This diploma thesis is focused on measuring of concentration of atomic nitrogen for different conditions (decay time, pressure, admixture). The titration method by nitric oxide in post-discharge was used to determinate of concentration of atomic nitrogen. All experimental results were obtained by the optical emission spectroscopy. Optical emission spectra were taken in the range of 300-600 nm. DC discharge was created in a quartz tube in a flowing regime. The flowing regime was chosen for this experiment because of better time resolution of decay time, order in milliseconds. Decay time was in the range of 16 – 82 ms for individual experiments. Nitrogen flow was 400 mln/min. Nitrogen oxide flow was in the range of 0-10 mln/min and it was added at the selected post-discharge time. Trace of methane was 0,006 % of the whole volume. Total gas pressure was set on values from 500 to 4000 Pa. The output of discharge was set on constant value of current 150 mA and the output has changed according to the amount of pressure. Nitrogen first positive, second positive and first negative spectral systems, NO spectral system and NO2* spectral system were recognized in all measured spectra. Absolute concentration of atomic nitrogen was specified by the method of titration of NO. Traces of methane increase dissociation of molecular nitrogen and therefore increase the concentration of atomic nitrogen. This thesis brings new results into longtime research of moon Titan and new results into study of processes in nitrogen-methane plasma.
Study of nitrogen post-discharge by mercury vapor titration
Teslíková, Ivana ; Brablec, Antonín (referee) ; Mazánková, Věra (advisor)
The aim of this master thesis is a study of nitrogen post-discharge by mercury vapours titration. The nitrogen post-discharge is investigated for many years theoretically as well as for a practical use. The object of this master thesis is a study of kinetic processes ongoing at titrations of mercury vapours during the nitrogen post-discharge at different pressures and applied powers. All experimental data were obtained from an optical emission spectroscopy of nitrogen post-discharge. DC discharge in flowing regime was chosen for measurements. The first part of experiments was carried out at the constant discharge current (100 mA), voltage (1300 V) and wall temperature (300 K). The total gas pressure was varied in range of 500-3000 Pa at nitrogen flow in range of 0.12-0.68 l/min. Nitrogen flow values were arranged to obtain constant nitrogen flow velocity for all gas pressures. The second set of experiments studied power dependencies. The current was varied in the range of 50-200 mA for constant voltage 1300 V. The total gas pressure in this case was 1000 Pa. Mercury vapours were introduced into the system by titration tube at different post-discharge time. The nitrogen pink afterglow effect was well visible at all experimental conditions. This effect corresponds to the maximum intensity of light emission, which expresses as considerable growth of characteristic pink radiation in the post-discharge time. Optical emission spectra of post-discharge were taken in the range of 320-780 nm. Besides three nitrogen spectral systems (first and second positive and first negative), the mercury line at 254 nm was recorded in the second order spectrum at 508 nm under these conditions if mercury was added. This spectral line is excited under post-discharge conditions by collisionally induced resonance energy transfer from nitrogen highly vibrationally excited ground state metastables and it opens an unique technique for their monitoring. The dependence of relative intensities on decay time for mercury spectral line and selected nitrogen spectral systems at different titration positions were measured. The relative intensities of nitrogen bands decrease with increasing of mercury line relative intensity for all total gas pressures. The pink afterglow phenomenon shifts to the later decay times with the increasing of total gas pressure. In the case of experiments at different power, it can be seen that with decreasing power mercury spectral line intensity decreases in post-discharge time. The first detailed tests of the unique detection for highly excited of nitrogen metastables were completed. However this master thesis is concentrated on the basic research which supports better indication of kinetic processes and reactions leading to transformation of excitation energy, this new knowledge should be applied in future also in technologies based on the long-lived metastable induced reactions.

National Repository of Grey Literature : 12 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.