National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Biodegradation of polyesters and other polymers in soil and compost
Papala, František ; Smilek, Jiří (referee) ; Obruča, Stanislav (advisor)
This diploma thesis studies the biodegradation of polyhydroxybutyrate (PHB) and polylactic acid (PLA) within soil and compost environments. The experimental part of this work is concerned with the differences in degradation across environments and the effects of degraded polymers on the environment itself. Experiments revealed that higher temperature and potentially also higher humidity substantially affect the rate of biodegradation. A significant degradation of all the polymers was observed in the compost medium, while polymers within the soil medium did not demonstrate any visible change nor change in mass after the 8th week of experiment. Even though SEM images revealed slow microbial degradation of soil PHB, this was not seen in any of the soil-incubated PLA samples. This might indicate primarily abiotic mechanism of PLA degradation. Germination and grow tests, which used the prepared polymer-enriched compost as a substrate and fertilizer, respectively, did not in most cases reveal any significant differences between individual plants across substrates. This seems to imply that neither the examined polymers nor their degradation products generated during composting are phytotoxic.
Biodegradation of bioplasts in compost environment
Vodička, Juraj ; Kovalčík, Adriána (referee) ; Obruča, Stanislav (advisor)
This master’s thesis focuses on biodegradation of polyhydroxybutyrate (PHB) and polylactic acid (PLA). The theoretical part discusses an origin, properties and applications of investigated biopolyesters, and so the enzymology of their biodegradation. The experimental part deals with biodegradation of these polymers in liquid medium using several pure thermophilic bacteial strains and controlled composting of these bioplastics. Amongst six tested thermophilic bacterial strains only one showed PHB-biodegradation activity – strain Schlegelella thermodepolymerans. No degradation degree of amorphous or semi-crystalline PLA was observed. Mainly disintegration of both forms of PLA articles was observed in compost environment, thus the abiotic mechanism of its decomposition was indicated. After 4 weeks of composting, the relative weight loss of 99 % and 63 % was detected in amorphous and semi-crystalline PLA respectively. On the contrary, the weight loss of PHB after 4 weeks of composting reached 36 %, moreover, a half decrease of molar mass was observed using SEC. The surface erosive mechanism of PHB-biodegradation was stated using SEM. By monitoring of esterase, lipase and protease activities, no influence on the compost by polymer presence was concluded at statistical significance.
Employment of thermophilic bacteria for biodegradation of synthetic and natural polymers
Csölle, Eduard ; Sedlář, Karel (referee) ; Obruča, Stanislav (advisor)
This bachelor’s thesis deals with the employment of thermophilic bacterium Schlegelella thermodepolymerans for biodegradation of selected polymers, namely poly(3-hydroxybutyrate) (PHB), polylactic acid (PLA), and poly(butylene adipate-co-terephthalate) (PBAT). The theoretical part focuses on the properties and origin of these bioplastics, the characteristics of the studied bacteria, and the general course of the biodegradation process. The experimental part discusses the twenty-day cultivation of three tested strains in the presence of the mentioned polymers and the subsequent evaluation of the degradation rate of these materials. The greatest increase in biomass content was observed by spectrophotometry for strain DSM 15344 when cultured on PHB. With blank samples (without polymers), it was shown that for significant growth, the bacteria had to truly utilize the polymers present. Gravimetric analysis of biomass content confirmed that PHB was the most suitable substrate for cultivation. The highest mass losses were recorded for PHB and were around 30 % across all three strains. For strain LMG 21645, the mass has decreased by almost 33 %. The weight losses of PLA and PBAT were considerably lower. Nevertheless, the most significant molecular weight loss was observed by SEC-MALS for PLA, reaching approximately 80 % for strain DSM 15264. SEM analysis of the polymer surface confirmed that the biodegradation of PHB occurs by enzymatic surface erosion. In contrast, the PLA and PBAT samples did not show any signs of biodegradation.
Biodegradation of polyesters and other polymers in soil and compost
Papala, František ; Smilek, Jiří (referee) ; Obruča, Stanislav (advisor)
This diploma thesis studies the biodegradation of polyhydroxybutyrate (PHB) and polylactic acid (PLA) within soil and compost environments. The experimental part of this work is concerned with the differences in degradation across environments and the effects of degraded polymers on the environment itself. Experiments revealed that higher temperature and potentially also higher humidity substantially affect the rate of biodegradation. A significant degradation of all the polymers was observed in the compost medium, while polymers within the soil medium did not demonstrate any visible change nor change in mass after the 8th week of experiment. Even though SEM images revealed slow microbial degradation of soil PHB, this was not seen in any of the soil-incubated PLA samples. This might indicate primarily abiotic mechanism of PLA degradation. Germination and grow tests, which used the prepared polymer-enriched compost as a substrate and fertilizer, respectively, did not in most cases reveal any significant differences between individual plants across substrates. This seems to imply that neither the examined polymers nor their degradation products generated during composting are phytotoxic.
Biodegradation of bioplasts in compost environment
Vodička, Juraj ; Kovalčík, Adriána (referee) ; Obruča, Stanislav (advisor)
This master’s thesis focuses on biodegradation of polyhydroxybutyrate (PHB) and polylactic acid (PLA). The theoretical part discusses an origin, properties and applications of investigated biopolyesters, and so the enzymology of their biodegradation. The experimental part deals with biodegradation of these polymers in liquid medium using several pure thermophilic bacteial strains and controlled composting of these bioplastics. Amongst six tested thermophilic bacterial strains only one showed PHB-biodegradation activity – strain Schlegelella thermodepolymerans. No degradation degree of amorphous or semi-crystalline PLA was observed. Mainly disintegration of both forms of PLA articles was observed in compost environment, thus the abiotic mechanism of its decomposition was indicated. After 4 weeks of composting, the relative weight loss of 99 % and 63 % was detected in amorphous and semi-crystalline PLA respectively. On the contrary, the weight loss of PHB after 4 weeks of composting reached 36 %, moreover, a half decrease of molar mass was observed using SEC. The surface erosive mechanism of PHB-biodegradation was stated using SEM. By monitoring of esterase, lipase and protease activities, no influence on the compost by polymer presence was concluded at statistical significance.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.